• Title/Summary/Keyword: Numerical errors

Search Result 872, Processing Time 0.028 seconds

Adaptive Runout Control of Magnetically Suspended High Speed Grinder Spindle (자기베어링지지 연삭기 추축계의 고속 회전시 런아웃 적응제어)

  • 노승국;경진호;박종권;최언돈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.52-55
    • /
    • 1997
  • In this paper, the case study of reducing rotational errors is done for a grinding spindle with an active magnetic bearing system. The rotational errors acting on the magnetic bearing spindle are due to mass unbalance of rotor, runout, grinding excitation and unmodeled nonlinear dynamics of electromagnets. For the most case, the electrical runout of sensor target is big even in well-finished surface; this runout can cause a rotation error amplified by feedback control system. The adaptive feedforward method based on LMS algorithm is discussed to compensate this kind of runout effects, and investigated its effectiveness by numerical simulation and experimental analysis. The rotor orbit size in both bearings is reduced about to 5 pin due to lX rejection by feedforward control up to 50, 000 rpm.

  • PDF

Analysis and Design of Diaphragm-type Air Braking System for Train (철도차량의 막판식 공기제동시스템의 해석 및 설계)

  • 노진환;김재도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.605-608
    • /
    • 1997
  • In this paper, the case study of reducing rotational errors is done for a grinding spindle with an active magnetic bearing system. The rotational errors acting on the magnetic bearing spindle are due to mass unbalance of rotor, runout, grinding excitation and ed nonlinear dynamics of electromagnets. For the most case, the electrical runout of sensor target is big even in well-finished surface; this runout can cause a rotation error amplified by feedback control system. The adaptive feedforward method based on LMS algorithm is discussed to compensate this kind of runout effects, and investigated its effectiveness by numerical simulation and experimental analysis. The rotor orbit size in both bearings is reduced about to 5 pin due to lX rejection by feedforward control up to 50,000 rpm.

  • PDF

Model Reduction Considering Both Resonances and Antiresonances (공진과 반공진 특성을 동시고려한 모델 축소)

  • 허진석;이시복;이창일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.985-990
    • /
    • 2001
  • The Frequency Response Function(FRF)s of FE Model reduced by SEREP methods accurately estimate the full model at resonance frequencies, However these FRFs are not accurate at antiresonance frequencies, Additionally, the truncation errors may he significant in the reduction mode1. So this paper considers the possibility of SERFP method through a numerical method to preserve dynamic behavior at antiresonance and appliers the static or dynamic compensation methods for truncation errors to the reduction model. This compensated reduction model is redesigned for pole-zero cancellation methods the objective of reducing a resonance frequency.

  • PDF

A modified sliding mode controller for the position control of a direct drive arm

  • Lee, Jong-Soo;Kwon, Wook-Hyun;Choi, Kyung-Sam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.884-889
    • /
    • 1990
  • In this paper, a new hybrid position control algorithm for the direct drive arm is proposed. The proposed control is composed of discrete feedforward component and continuous feedback component. The discrete component is the nominal torque which approximately compensates the strong nonlinear coupling torques between the links, while the continuous control is a modified version of sliding mode control which is known to have a robust property to the disturbances of system. For the proposed control law, we give sufficient condition which guarantees the bounded tracking error in spite of the modeling errors, and the efficiency of the proposed algorithm is demonstrated by the numerical simulation of a three link manipulator position control with payloads and parameter errors.

  • PDF

A Method for the Measurement of Flow Rate in Pipe using a Microphone Array (등간격으로 배열된 마이크로폰을 이용한 관내 유량측정 방법)

  • Kim, Yong-Beum;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1667-1674
    • /
    • 2000
  • A new method is proposed to measure the flow rate in a pipe by multiple measurements of acoustic pressure using a microphone array. It is based on the realization that variation in flow velocity affects the change in wave number. The method minimizes measurement random errors and sensor mismatch errors thereby providing practically realizable flow rate measurement. One of the advantages of the method is that it does not obstruct the flow field and can provide the time-spatial mean flow rate. Numerical simulations and experiments were conducted to verify the utility of this method.

  • PDF

Force control of a structurally flexible robotic manipulator

  • 최병오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.369-373
    • /
    • 1992
  • Force control of a planar two-link structurally flexible robotic manipulator is considered in this study. The dynamic model is obtained by using the extended Hamilton's principle and the Galerkin criterion. A method is pressented toobtain the linearized equations of motion in Cartesian space for use in designing the control system. The approachto solving the control problem is to use feedforward and feedback control torques. The feedforward torques maneuver the flexible manipulatro along a nominal trajectory and the feedback torques minimize any deviations from the nominal trajectory. The linear quadratic Gaussian/loop transfer recovery (LQG/LTR) design methodology is explotied to design a robust feedback control system that can handle modeling errors and sensor noise, and operates on Cartesian space trajectory errors. The Lqg/LTR compenstaor together with a feedforward ollp is used to control the flexible manipulator. Simulated results are presented for a numerical example.

Runout Control of a Magnetically Suspended Grinding Spindle (자기베어링으로 지지된 연삭 스핀들의 런아웃 제어)

  • 노승국;경진호;박종권;최언돈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.1011-1015
    • /
    • 2000
  • In this paper, the case studies of reducing rotational errors is theoretically done for a grinding spindle with an active magnetic bearing system. The rotational errors acting on the magnetic bearing spindle are due to mass unbalance of rotor, runout, grinding excitation and unmodeled nonlinear dynamics of electromagnets. The adaptive feedforward method based on LMS algorithm is discussed to compensate output and input disturbances, and investigated its effectiveness by numerical simulation. The feedforward control reduced external excitation and rotational error for specified frequency. The interpolation method using impulse function for cancelling the electrical 'uncut is studied. These methods show their effectiveness for the rotational accuracy of the improving magnetic bearing spindle through some simulation results of the rotational error decreased by them.

  • PDF

THE EFFECT OF ROUNDING ERRORS ON NEWTON METHODS

  • Argyros, Ioannis K.
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.3
    • /
    • pp.765-772
    • /
    • 2000
  • In this study we are concerned with the problem of approximating a solution of a nonlinear equation in Banach space using Newton-like methods. Due to rounding errors the sequence of iterates generated on a computer differs from the sequence produced in theory. Using Lipschitz-type hypotheses on the second Frechet-derivative instead of the first one, we provide sufficient convergence conditions for the inexact Newton-like method that is actually generated on the computer. Moreover, we show that the ratio of convergence improves under our conditions. Furthermore, we provide a wider choice of initial guesses than before. Finally, a numerical example is provided to show that our results compare favorably with earlier ones.

On the Suitability of Centered and Upwind-Biased Compact Difference Schemes for Large Eddy Smulations (II) - Static Error Analysis - (LES에서 중심 및 상류 컴팩트 차분기법의 적합성에 관하여 (II) - 정적 오차 해석 -)

  • Park, No-Ma;Yoo, Jung-Yul;Choi, Hae-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.984-994
    • /
    • 2003
  • The suitability of high-order accurate, centered and upwind-biased compact difference schemes for large eddy simulation is evaluated by a spectral, static error analysis. To investigate the effect of numerical dissipation on LES solutions, power spectra of discretization errors are evaluated for isotropic turbulence models in both continuous and discrete wavevector spaces. Contrary to the common belief, the aliasing errors from upwind-biased schemes are larger than those from comparable non-dissipative schemes. However, this result is the direct consequence of the definition of the power spectral density of the aliasing error, which poses the limitation of the static error analysis for upwind schemes.

Study on approximating subdivision schemes for the application to CAD/CAE (CAD/CAE 적응을 위한 근사 서브디비전 방법의 고찰)

  • 서홍석;조맹효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.237-243
    • /
    • 2002
  • Recently, in computer-aided geometric modeling(CAGD), subdivision surfaces are frequently employed to construct free-form surface. Subdivision schemes have been very popular in computer graphics and animation community, but the community of CAGD adopts this tool only recently to handle surface geometry. In the present study, Loop scheme and Catmull-Clark scheme are applied to generate smooth surfaces. To be consistent with the limit points of target surface, the initial sampling points are properly rearranged. The pointwise curvature errors and coordinate value errors between the points in the sequence of subdivision process and the points on the target surface are evaluated In the numerical examples in both Loop scheme & Catmull-Clark subdivision scheme.

  • PDF