90 KACC 1990. 10. 26~27

A MODIFIED SLIDING MODE CONTROLLER FOR THE
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ABSTRACT

In this paper, a new hybrid position control
algorithm for the direct drive arm is proposed. The
proposed control is composed of discrete feedforward
component and continuous feedback component. The
discrete component is the nominal torque which
approximately compensates the strong nonlinear coupling
torques between the links, while the continuous control is
a modified version of sliding mode control which is
known to have a robust property to the disturbances of
system.

For the proposed control law, we give sufficient
condition which guarantees the the bounded tracking
error in spite of the modeling errors. and the efficiency of
the proposed algorithm is demonstrated by the numerical
simulation of a three link manipulator position control
with payloads and parameter crrors.

1. INTRODUCTION

The dynamic equation of robotic manipulator is
highly nonlinear due to the inertia and strong coupling
terms among the joints{1,2]. The direct drive arm does
not have backlash and friction of reducers so it is suitable
for the accurate position control. However, in direct
drive arm, the the load and the disturbance torque
influence the motor dynamics directly, since the motor is
directly linked to the load. Neglecting the nonlinear
dynamic terms, it is difficult to guarantee the tracking
error bound in high speed motions, since the neglected
terms act as a large disturbance to the controller. In
order to improve the trajectory tracking accuracy, it is
necessary to take the robot manipulator dynamics into
account.

Many advanced state space control methods of
robot manipulators have been proposed which needs the
computation of complex dynamics. The well-known
Computed Torque Method (CTM) is a good robot
controller, if the exact knowledge of the manipulator
dynamics is available. However, it is almost impossible
to obtain the complete dynamic model of robots due to
modeling uncertainties, parameter variations and
unknown payloads ete. This modeling errors, especially
the error of inertia matrix, may destabilize the controlled
system{3,4]. Moreover, the computation of dynamics
requires relatively long sampling time and this leads to
the time delay of control input which deteriorates the
performance in real-time control systems[5].  These
inherent modeling errors and computational time delay
call for the robust robot control algorithms.
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The sliding mode controller based on the Variable
Structure System(VSS) control is robust to the modeling
errors[6], which makes it appropriate for the manipulator
control problem, which necessarily contains the modeling
uncertainty and large disturbances. Therefore, many
robot arm control algorithms have been proposed using
the sliding mode control[T—10]. The VSS control has
different. structures depending on which side of the
hyperplane(sliding surface) the systern belongs to.  In
this theory, the switch of control structure is assumed to
occur with infinite frequency. However, due to physical
constraints, input switches not with infinite frequency
but only with finite high frequency, and the motion of
system will be in some neighborhood of the sliding
surface with chattering, which is undesirable in practice.
To avoid it, many algorithms have been proposed. which
replaced the discontinuous control in the neighborhood of
sliding surface by some continuous control{8-10]. These
algorithms are VSS control if the system trajectory is
outside the boundary of the sliding surface, but if the
trajectory is inside the boundary of sliding surface, they
interpolate the control by proper continuous function to
avoid the discontinuity of it. However, to implement
these aloorithims digitally, we need the computation of
robot inodel with feedback information at every sampling
time.  In spite of the efficient recursive dynamics
algorithms and computing hardware, relatively long time
is necessary for the computation of model[1,2,11,12].

To reduce the time delay of coutrol, it is desirable
that the feedback information is not involved in the
computation of model, and the feedforward compensation
using the nominal torque is a good candidate for this.
The adaptive control algoritlun  with feedforward
compensation{l3] may be a robust control. but it does
not contain the stability analysis and has a feedback
component which needs too much computation.  The
hybrid controller which consists of discrete feedforward
compensation and continuous P-D control gave good
trajectory tracking performance(l4], but the stability of
system was not analyzed and the feedback component
must, give more robustness to the compensation error.

In this paper, a new hybrid control algorithm is
proposed and the stability of the system is proved. The

proposed algorithm is  comprised of discrete and
continuous controls. The role of discrete component is to
compensate the nonlinear coupling torques

approxamately. ‘This component allows a long sampling
time and can be computed off-line. The continuous
component is a modified sliding mode control which gives
the robust trajectory tracking property to the
approximately compensated system.



2. PRELIMINARIES

The motion equations of an n d.o.f. manipulator
can be derived from the Lagrange—FEuler formulation and
may be expressed generally as

D(q(2)) a(0)+h(g(), q(5))=(?) (1)

where 7(2)eR” is joint torque, ¢(t),q(t),##)eR™ are joint

position, velocity and acceleration, D{g(t))eR™" is
inertia which is a symmetric positive definite matrix and

B(a(t),q(t))eR”™ is nonlinear coupling term including
centrifugal, Coriolis and gravitational forces. In the

following, D(¢(t)) will be denoted as D and k(¢(t),q(t)) as

h when necessary. If we define 2(8)=[¢(t)",g(£)"]"eR2",
the state equation (1) becomes

. 0
I(t)={ l]x(t)+
00

To compute the control torque of system (1), we
need the dynamic model of robot system. But exact
modeling is impossible because of the existence of
parameter uncertainties, unknown frictions and varying
payloads etc.. So we may express the available model as
follows

0

N,y

0
+[D—1}’U> (2)

Dgt)) a( )+ o(t),q(0)=T(¢). 3)
In this paper, the position control of the system (1) is
the desired

considered when

qd(t)v.qd(t)*.‘.]
Let's define s(£)eR™ as

trajectories

(1) and the available model (3) are given.

t
s()=e()+ K e(t)—+—1\ Jt e(7)dv (4)

Q

where e(t)=¢(t) —qd(t EIR is an error and K K eR™™ ar
gains.  Let the trajectory (we will call eqmvalent
trajectory) u(f), g«(f), @(f) € R" satisfy the following

equation

0.

e(t) + Kué(t) + er(t) = (5)

or
o8}z (t)=A

ERO=I0) (6)

where z(t)=[g«(t)T, % (8)7]", Id(t) ﬂd(t) :qd(t) |” and

A € R 45
0 IJ
K, K|

Since det[\[~A] = det[/\21+)\Kv+Kp], we can find
K, and I(p which makes the system (6) exponentially
stable, or equivalently which makes the condition

4= (™
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tet < g ®)

hold for some given ¢>0 and x>0{15]. Here, the induced
Euclidean matrix norm of A is defined as

Jorallt>0

1

[Al = (472 (9)

where A M( -) denotes the maximum eigenvalue of matrix.

It must be noted that the equivalent trajectory is only an
imaginary intermediate function between z(¢) and ::d( t)

and does not exists.in real system. In the following, we
assume that the gain matrices K K are chosen so that

the condition (8) holds for given g k. Now, we state the
following Lemmas as a prerequisite to main Theorems.

Lemma 1 : 1f [s(s)] <y is satisfied for any & t,, then

It Al

is satisfied for all ¢ > ty

n( OISl 2t ) —2a(t,) | +27] - (10)

Proof : Using (4) and (6), we may rewrite (2) as

0
11
é(t)} )

If we integrate and take ihe norm of both sides, then if

)24 (t)= Ao t)—zs( )|+

we apply the Bellman—Gronwall inequality[16], we
obtain
-2 1<ty )zl +2)- AL 2y
for all ¢ > Lo which proves Lemma 1.
If we take z(2,)=2(t,), (10) becomes
Io(0)-2x( )] <27- I AllE (13)

The above Lemma implies that the distance of #{(¢) {rom
equivalent trajectory z({) is bounded for finite time.

The next Lemma states the boundedness of trackin
error for the infinite time interval. Define the set S ,%
as

S(p50)={ weR™; | w-v] <p}. (14)

for given p>0 and vector weR"™.

Lemma 2 : Suppose |s(t)|<7 is satisfied for all 2t

and the system (6) satisfies (8). Then z(¢) converges
exponentially into the set S(e7;zd(t)) with ¢ given by

=200 {gtmr]

where 4 is defined as

(15)

_ A
b=

(16)



Proof : Since the equivalent trajectory satisfies
(8), there exists T < o which satisfy

lze(t+ D=z (t+ D]<e] ()2 ()  (17)
for any a€(0,1) and for all ¢. Define E(a,f) as
0. Al T
8- «a

for any fe(a,1). Now if Jo{t,)-z(t))]|>E(,8)7 holds
for some £, we take z«(f{ )=2(t ) and apply the triangle
inequality

E(a,f) = (18)

|z*—zd|§|z-—z*|+|z*~—:rd| (19)
to (17) and use the inequalities (13) and (17) to get
V2t + T)=z (b, + T <Blaft )z (1)) (20)

Now if |:n(t)—zd(t)|>E(a,[3)7 still holds at =t +T, we

repeat the same process with the initial condition
z(t,+ T)=2(t_+T). Then we get

|:z(to+2T)wxd(to+2T)|<ﬁ2|:1(to)—zd(to)| 2y
If this process is repeated n times, it follows
Lot +n D)~z (b +n D <BY 2ty )-z 0t )] (22)

Equation (22) implies the exponential convergence of ()
into the set S(E( a,0);z,(t)). The infimum of E(a,f) with

respect to f occurs as -1, so if we differentiate E(a,l)
with respect to o and equate to 0, we get

1AL
-k , (23)

*
and the upper bound of the trajectory error E(a ,1) is
given by (17) and (18). This completes the proof.

Q= &

Lemma 2 says that if |z(t0)~zd(to)|gm is satisfied
at t=t , then |z(t)—zd(t)|§e'y holds for all ¢>{ . In the

next section, we propose a control algorithm which
guarantees |s(#)}<~ for the position control.

3. CONTROL ALGORITHMS

T(t)=rf/(t)+ Tc(t) (24)
where
0= D(T0) T+ (T (1),2,00) (25)
rt) = D 0) u () (26)
and

)  (t
uc(t)=—Kve(t)—er(t)—kss(t)-‘ko]rs(%ﬂg——H%& (27)

The feedforward component f}t) and i)(?] AD) in
feedback component 'rc(t) are step functions with large

time interval T, which must be greater than the

necessary time for the computation of model (3). We

used ¢ d(t),'q d(t),'lj A1) to denote that these are sampled
values of the desired trajectories g(t),q,(1),¢ D) with a
sampling interval T 5 In the following, let's denote

b(id(t)) as bd and il(?]d(t),ild(t)) as }ld for brevity. If
we apply the input control torque given by (24)—(27) to
the robot system (1), we get

. e (1)
s(t)=~—kss(t)—koD 1Dd-”?(—:ﬂm +n(t) (28)

where the disturbance vector n{¢)eR™ is given by

wt) = n 4,100 = SXXD[a(0-K 1)
K et)—k S0 Ha -2 01+ D ko (29)
and 6D(¢) is defined as
$D()=6D(qq=D D1 (30)

We can rewrite (28) as

. s(t)  6D(t)s(t)
SO=—k AR 5T A SoTs T 58 (“;;“)

Let's define N and M as

N=max {[n(gy PR Pl HEOMC OB RS F O
3 b (32)
M=Htm;{ 16D(qp2) LA t)eS(em g (1) (33)

Theorem 1 : Consider the system (1) with controls

(24)-~27). It Is(t )<y and  |a(t)-z,(t ) }<er is
satisfied for some v>0, and if the gain ko satisfies

(k-p) - (A+7)

N-(1+ —%) <k <8 77

o

(34)

for given Kv’ Kp, ks and for some small p > 0, then the
system trajectory satisfies

I < 7, a(t) € S(ewz (1) (35)
forall t> ¢,

Proof : Take V(t)=%s(t)Ts(t) as a Lyapunov function

and differentiate it with respect to ¢, then use the matrix
inequality[17)

' Ay< |- 1ol 1Al (36)
we get



s(t

V
210 < U101~ b — |
1éD(t) | (37)
R
R rrE e

If we assume z(t)jES(cT,zd(t)) for some ¢=t,, then there
exists €[t ,t,) such that s(t)eS(v) for all te[t ,¢) but

Ist)l=7 and 97(1)>0.  Then s(t)eS(enzty),

|n(t) <N and |6D(t,)|<M follow from Lemma 2, (32)

and (33). Hence
dv Is(t) ]
LA Nk — —
4¥-( <1501 N -, o N
2 M (38)
k —— — k
+ 1501 { STy J
at tzt]. Hence if (34) holds
20 < —ps(t)" (1) (39)

at t=t¢;, which completes the proof by contradiction.

If we take smaller T, and use more accurate

model, k£ has smaller lower bound and larger upper
We might

take a large sampling time T 3 for the discrete terms T i

bound, which ensure the existence of gain k.

and i) d considering the computational burden. However,

if we take large sa,mplmg time for the discrete terms,
|»(t)] and |éD(t)] become so large that the cogdmon

(34) become severe. For the computation of Dd’ we

may use the G-D algorithm&lS] or CMAC[19]. Note that
these terms are functions of only desired trajectories so
these can be computed off-line.

If we can choose smaller ¥, it is evident that s(¢)
remains closer to the surface s(¢) = 0 and the trajectory
error becomes smaller. If we take smaller A in control
algorithm (27), then the lower and upper bounds of
control gain ko is decreased, but it is difficult to expect

the smooth change of control. If accurate model is
available and the sampling time T, is small, we can

assurne that M<1, which gives another sufficient
condition of k_ for the system stability.

Theorem 2 : Consider system (1) with controls given

by (24)—(27). Assume that M<1 is satisfied and for
some 'y>0 s(t <7 and |z(to)—zd(to)|$f7 is satisfied

If the gain k_ satisfies

N(1+-2-)
Al (10)
1_

for given Kv’Kp and ks, then the system trajectory

satisfies
Is(t)] < vand Ht)eS(er,z (1))
for all ¢ > iy

(41)
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I'TOOI : Saine as the prool vl l'neorem 1, we get

Is(t)1

dVi, _ e
FHORI EOI REEAC] RO

(116D 1)} — b s(t) S0

t<t, and |s(t) =7,

(42)

If we assume that |s(t)]|<7y for all t,<

then it follows
Is(t) |
“ls(t)]+A

at t=t,. Hence, from the condition (40), it follows

Sostsol{N—+, M) |- s(0s(t) ()

V() <~k s(t) (1) (44)

at ¢ = ¢,, which completes the proof.

Theorem 2 gives some insight of the role of the
—ks(t) : if |s(t)] > 7 is satisfied, then |s(?)]

converges exponentially into the bound % with a faster
rate than 1/1:3. For the implementation, it is efficient to

take the gain matrices Kv and K_as diagonal so that we
When
we compute the feedback component, the inertia matrix

term,

may compute uC(t) independently for each joint.

Dd is assumed to be known since the update of it allows

large sampling time. If we digitally implement the
proposed algorithm, the controller may take the
multirate structure. Since the feedforward component is
computed using the available model, which needs 132n
multiplications and 11ln — 4 additions using the
recursive Newton—Euler algorithm. However, the needed
number of multiplication and addition to compute 7 C(t)

is 2n + 6 multiplications, 2n + 5 additions and 1 root
only. So that the feedback component might have
frequency of up to forty times higher than feedforward
component.

4. NUMERICAL SIMULATION

The 3 d.o.f. robot model is shown in Fig.l, and
the parameters are D=0.0243kg-m, my = my = 0.782 kg ,

and §y = b = 0.23 m. We assumed the modeling errors of

each mass,link and inertia to be 1%. Although the model
was assumed 10 carry no payload, the real robot system
(1) was simulated by carrying the payloads of 0 kg.,0.3
kg., and 0.5 kg.. The execution time was 2 seconds and
the desired trajectory was

Dt (ag)-sin(nt)
21

o) = g

with initial position ¢; = [0.4,-0.1,0.2)"rad and final

[-0.1,0.3,0.65]'rad. We assumed T, as
1ms but two cases for T, ; 10ms, 50ms. The simulation
block diagram is shown in Fig.2. We assumed Kv=501’
Kp=1001, k=100, k =20 and 7=0.1.
result is shown in Fig.3.

position ¢ =

The simulation



When the payload is 0 kg(:¢.e. no payload error
exists) and Tﬂ = 10ms, the proposed algorithm gives

If we take the
the error bound

becomes larger than that of T ﬁzlﬂms case.

very good performance of tracking error.
compensation interval T, as 50ms,

As the payload error is increased, the proposed
algorithm maintains the robust trajectory tracking. In
case of T/3—50ms it must be noted that the tracking

errors does not deteriorate so much as the increase of the
payload error.

The simulation results show that the input torque
of proposed algorithm changes smoothly, which is a merit
for real implementation. To compensate for the
disturbance of the payload error and input delay due to
large sampling time, large input torque is necessary and
chattering occurs with small magnitude.

5. CONCLUSION

In this paper, a new hybrid control algorithm is
proposed. It is shown that the modified sliding mode
feedback component gives stability property to the
system in spite of large feedforward compensation errors.
The proposed algorithm is practical for real—time digital
implementation, since a relatively long sampling time is
allowed for the off-line computation of the model and
the simple structure of feedback control law allows a
small sampling time, which lcads to the multirate
control. The simulation result shows that the proposed
algorithm has efficient trajectory tracking property and
robust property to the modeling inaccuracy and unknov
payloads.
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