• Title/Summary/Keyword: Numerical computation

Search Result 1,367, Processing Time 0.026 seconds

Analysis of the Generation and Radiation of the Fan Noise by Using Commercial CFD Code (상용 CFD코드를 이용한 냉각홴 공력소음의 발생 및 방사 해석)

  • Jeon, Wan-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.1 s.14
    • /
    • pp.13-19
    • /
    • 2002
  • In the present study, a numerical simulation is performed for the flow through a cooling fan. The computation was performed by using commercial code, STAR-CD. A rotating fan was simulated by rotational motions using MRF (Multiple Rotating Reference Frame) in a steady-state analysis and sliding interface (rotating meshes) in an unsteady-state analysis. The results of numerical computation were in good agreement with experimental data. In order to calculate the acoustic signal, the unsteady flow-field was firstly calculated. The acoustics of the fan is calculated by using acoustic analogy based on the unsteady flow-field. The predicted acoustic signal shows the characteristics of the uneven bladed-fan.

VALIDATION OF NUMERICAL APPROACH FOR THE SEDIMENT OF MULTI-SIZE PARTICLES IN A FLUID CONTAINER (다양한 크기를 갖는 입자들의 유체 용기 내부에서의 침전에 대한 수치적 접근방법의 검증)

  • Ji, Youngmoo;Choi, Sangmin
    • Journal of computational fluids engineering
    • /
    • v.18 no.2
    • /
    • pp.93-98
    • /
    • 2013
  • In this paper, we reported the verification of numerical simulation approach for sedimentation of the multi-size particles in a container. The comparison between experimentally measured values and numerically evaluated values on settle down process of fully mixed mixture is carried out. In an attempt to represent the natural particle size distribution, various diameters of single particles are simulated and the results are compared with the outcome of the multi-size computation. When the empirical formula for mean particle size estimation is adopted to define the sediment diameter, computation and comparison are conducted.

A Study of the Reform of Mathematics Education for the Upper Secondary School in Japan

  • Lee, Joong-Kwoen
    • Research in Mathematical Education
    • /
    • v.2 no.1
    • /
    • pp.5-12
    • /
    • 1998
  • The COM curriculum provides first a core of mathematics for all students, and then offers opportunities for students to enter different streams of mathematics studies. The flexible curriculum (COM) is certainly welcome as it focuses on a transition from concrete to conceptual mathematics and on sequentially learning the power of mathematical language and symbols from simple to complex. This approach emphasizes the use of computers in mathematics education in the upper secondary grades. In Mathematics A, one unit is developed to computer operation, flow charts and programming, and computation using the computer. In mathematics B, a chapter addresses algorithms and the computer where students learn the functions of computers, as well as programs of various algorithms. Mathematics C allots a chapter for numerical computation in which approximating solutions for equations, numerical integration, mensuration by parts, and approximation of integrals. But, unfortunately, they do not have any plan for the cooperation study.

  • PDF

An Immersed Boundary Method for Simulation of Density-Stratified Flows (밀도 성층 유동 해석을 위한 가상 경계법)

  • Yoon Dong-Hyeog;Yang Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.8 s.239
    • /
    • pp.940-947
    • /
    • 2005
  • An immersed boundary method for simulation of density-stratified flows has been developed and applied to computation of viscous flows past three different types of obstacle under table density stratification, namely laminar flows past a vertical barrier, a cosine hill, and a sphere, respectively. Density forcing is introduced on the body surface or inside the body. Significant changes in flow characteristics are observed depending on Fr. The numerical results are in good agreement with other authors' experimental and numerical results currently available, and shed light on computation of density-stratified flows in complex geometries.

Development of Time Domain Numerical Computation for Predicting Noise Barrier Efficiency (방음벽 성능 예측을 위한 시간영역 수치해석의 개발)

  • 임창우;정철웅;이수갑
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.757-761
    • /
    • 2001
  • In order to study noise barriers of complex shapes and to assess their efficiency, precise prediction model is required. For instance, geometrical approaches cannot deal with complex diffraction effects. So that in this paper, the time domain numerical computation method(Computational Aeroacoustics method) is applied to estimate noise reduction by diffraction and finite impedance condition. The CAA method can be used to calculate exactly the pressure of complex barrier shape with different impedance condition, such as T-shape, cylindrical edge and multi-edge noise barriers.

  • PDF

A Study on Optimum Computation of Extruding Force for the Extrusion (압출공정에 있어서 최적압출력 산정에 관한 연구)

  • Oh P. K.;Yu S. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.11a
    • /
    • pp.7-14
    • /
    • 2002
  • To carry out the analysis of the extruding products, it is necessary to get the optimum computation of extruding force for the extrusion. The existing numerical models of the extrusion may be large different from the actual conditions. In this study, accurate theoretical analysis of the extrusion forming and optimum extruding force should be subjected. It is to develop the numerical models which describes the optimum extrusion force. Therefore, the results should improve accuracy of extrusion forming and cause the energy saving for the extrusion.

  • PDF

A Numerical Study on Spin-up Flows in a Shallow Quadrangular Container (얇은 정사각형 용기 내의 스핀-업 유동에 관한 수치해석적 연구)

  • Park, Jae-Hyun;Suh, Yong-Kweon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.1005-1013
    • /
    • 2002
  • Spin-up is a transient flow phenomenon occurring in a container when it starts to rotate from rest or its rotational speed increases from a low to high value. However, most studies on this subject have been for two-dimensional approximation. In this study, spin-up flows in a shallow rectangular container are analysed by using three-dimensional computation. We compared our results with those obtained by others using basically two-dimensional computation. Effect of two parameters, Reynolds number and liquid depth on the flow evolution is studied. We found that 2-D result is not accurate enough, and the vertical velocity distribution should be assumed of a fourth-order polynomial function for a better comparison.

A Numerical Study for the Three-Dimensional Fluid Flow Past Tube Banks and Comparison with PIV Experimental Data

  • Ha, Man-Yeong;Kim, Seung-Hyeon;Kim, Kyung-Chun;Son, Young-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2236-2249
    • /
    • 2004
  • The analysis for the three-dimensional fluid flow past tube banks arranged in equilateral-triangular form at Re$\_$max/=4,000 is carried out using a large eddy simulation technique. The governing equations for the mass and momentum conservation are discretized using the finite volume method. Parallel computational techniques using MPI (Message Passing Interface) are implemented in the present computer code. The computation time decreases linearly proportional to the number of used CPUs in the present parallel computation. We obtained the time-averaged streamwise and cross-streamwise velocities and turbulent intensities. The present numerical results are compared with the PIV experimental data and agree generally well with the experimental data.

PREDICTION OF RIME ICE ACCRETION SHAPE ON 2D AIRFOIL (2차원 날개의 서리얼음 형상 예측)

  • Back, S.W.;Yee, K.J.;Oh, S.J.
    • Journal of computational fluids engineering
    • /
    • v.14 no.1
    • /
    • pp.45-52
    • /
    • 2009
  • Ice accretion may occur when the sold surface passes through the clouds containing supercooled water droplets. In the case of aircraft, it can result in serious performance degradation and safety hazard. In this study, numerical analysis code has been developed to predict the rime ice shapes on a 2-D airfoil and the computation results are validated against experimental data of NASA and other computation results of well-known ice prediction code, LEWICE. In addition, the effects of various numerical parameters on the ice shape have been systematically investigated.

Comparison of fully coupled hydroelastic computation and segmented model test results for slamming and whipping loads

  • Kim, Jung-Hyun;Kim, Yonghwan;Korobkin, Alexander
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.1064-1081
    • /
    • 2014
  • This paper presents a numerical analysis of slamming and whipping using a fully coupled hydroelastic model. The coupled model uses a 3-D Rankine panel method, a 1-D or 3-D finite element method, and a 2-D Generalized Wagner Model (GWM), which are strongly coupled in time domain. First, the GWM is validated against results of a free drop test of wedges. Second, the fully coupled method is validated against model test results for a 10,000 twenty-foot equivalent unit (TEU) containership. Slamming pressures and whipping responses to regular waves are compared. A spatial distribution of local slamming forces is measured using 14 force sensors in the model test, and it is compared with the integration of the pressure distribution by the computation. Furthermore, the pressure is decomposed into the added mass, impact, and hydrostatic components, in the computational results. The validity and characteristics of the numerical model are discussed.