• Title/Summary/Keyword: Numerical algorithm

Search Result 4,147, Processing Time 0.03 seconds

Adaptive Wavelet Transform for Hologram Compression (홀로그램 압축을 위한 적응적 웨이블릿 변환)

  • Kim, Jin-Kyum;Oh, Kwan-Jung;Kim, Jin-Woong;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of Broadcast Engineering
    • /
    • v.26 no.2
    • /
    • pp.143-154
    • /
    • 2021
  • In this paper, we propose a method of compressing digital hologram standardized data provided by JPEG Pleno. In numerical reconstruction of digital holograms, the addition of random phases for visualization reduces speckle noise due to interference and doubles the compression efficiency of holograms. Holograms are composed of completely complex floating point data, and due to ultra-high resolution and speckle noise, it is essential to develop a compression technology tailored to the characteristics of the hologram. First, frequency characteristics of hologram data are analyzed using various wavelet filters to analyze energy concentration according to filter types. Second, we introduce the subband selection algorithm using energy concentration. Finally, the JPEG2000, SPIHT, H.264 results using the Daubechies 9/7 wavelet filter of JPEG2000 and the proposed method are used to compress and restore, and the efficiency is analyzed through quantitative quality evaluation compared to the compression rate.

Dynamic Analysis of a KAERI Channel Type Shear Wall: System Identification, FE Model Updating and Time-History Responses (KAERI 채널형 전단벽체의 동적해석; 시스템판별, FE 모델향상 및 시간이력 응답)

  • Cho, Soon-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.145-152
    • /
    • 2021
  • KAERI has planned to carry out a series of dynamic tests using a shaking table and time-history analyses for a channel-type concrete shear wall to investigate its seismic performance because of the recently frequent occurrence of earthquakes in the south-eastern parts of Korea. The overall size of a test specimen is b×l×h =2500 mm×3500 mm×4500 mm, and it consists of three stories having slabs and walls with thicknesses of 140 mm and 150 mm, respectively. The system identification, FE model updating, and time-history analysis results for a test shear wall are presented herein. By applying the advanced system identification, so-called pLSCF, the improved modal parameters are extracted in the lower modes. Using three FE in-house packages, such as FEMtools, Ruaumoko, and VecTor4, the eigenanalyses are made for an initial FE model, resulting in consistency in eigenvalues. However, they exhibit relatively stiffer behavior, as much as 30 to 50% compared with those extracted from the test in the 1st and 2nd modes. The FE model updating is carried out to consider the 6-dofs spring stiffnesses at the wall base as major parameters by adopting a Bayesian type automatic updating algorithm to minimize the residuals in modal parameters. The updating results indicate that the highest sensitivity is apparent in the vertical translational springs at few locations ranging from 300 to 500% in variation. However, their changes seem to have no physical meaning because of the numerical values. Finally, using the updated FE model, the time-history responses are predicted by Ruaumoko at each floor where accelerometers are located. The accelerograms between test and analysis show an acceptable match in terms of maximum and minimum values. However, the magnitudes and patterns of floor response spectra seem somewhat different because of the slightly different input accelerograms and damping ratios involved.

Dynamic Analysis of MLS Difference Method using First Order Differential Approximation (1차 미분 근사를 이용한 MLS차분법의 동적해석)

  • Kim, Kyeong-Hwan;Yoon, Young-Cheol;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.331-337
    • /
    • 2018
  • This paper presents dynamic algorithm of the MLS(moving least squares) difference method using first order differential Approximation. The governing equations are only discretized by the first order MLS derivative approximation. The system equation consists of an assembly of the approximate function, so the shape of system equation is similar to FEM(finite element method). The CDM(central difference method) is used for time integration of dynamic equilibrium equation. The natural frequency analyses of the MLS difference method and FEM are performed, and two analysis results are compared. Also, the accuracy of the proposed numerical method is verified by displaying the dynamic analysis results together with the results by the existing second order differential approximation. In the process of assembling the first order MLS derivative approximation, the oscillation error was suppressed and the stress distribution was interpreted as relatively uniform.

Performance evaluation of inerter-based damping devices for structural vibration control of stay cables

  • Huang, Zhiwen;Hua, Xugang;Chen, Zhengqing;Niu, Huawei
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.615-626
    • /
    • 2019
  • Inerter-based damping devices (IBBDs), which consist of inerter, spring and viscous damper, have been extensively investigated in vehicle suspension systems and demonstrated to be more effective than the traditional control devices with spring and viscous damper only. In the present study, the control performance on cable vibration reduction was studied for four different inerter-based damping devices, namely the parallel-connected viscous mass damper (PVMD), series-connected viscous mass damper (SVMD), tuned inerter dampers (TID) and tuned viscous mass damper (TVMD). Firstly the mechanism of the ball screw inerter is introduced. Then the state-space formulation of the cable-TID system is derived as an example for the cable-IBBDs system. Based on the complex modal analysis, single-mode cable vibration control analysis is conducted for PVMD, SVMD, TID and TVMD, and their optimal parameters and the maximum attainable damping ratios of the cable/damper system are obtained for several specified damper locations and modes in combination by the Nelder-Mead simplex algorithm. Lastly, optimal design of PVMD is developed for multi-mode vibration control of cable, and the results of damping ratio analysis are validated through the forced vibration analysis in a case study by numerical simulation. The results show that all the four inerter-based damping devices significantly outperform the viscous damper for single-mode vibration control. In the case of multi-mode vibration control, PVMD can provide more damping to the first four modes of cable than the viscous damper does, and their maximum control forces under resonant frequency of harmonic forced vibration are nearly the same. The results of this study clearly demonstrate the effectiveness and advantages of PVMD in cable vibration control.

Variable selection for latent class analysis using clustering efficiency (잠재변수 모형에서의 군집효율을 이용한 변수선택)

  • Kim, Seongkyung;Seo, Byungtae
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.6
    • /
    • pp.721-732
    • /
    • 2018
  • Latent class analysis (LCA) is an important tool to explore unseen latent groups in multivariate categorical data. In practice, it is important to select a suitable set of variables because the inclusion of too many variables in the model makes the model complicated and reduces the accuracy of the parameter estimates. Dean and Raftery (Annals of the Institute of Statistical Mathematics, 62, 11-35, 2010) proposed a headlong search algorithm based on Bayesian information criteria values to choose meaningful variables for LCA. In this paper, we propose a new variable selection procedure for LCA by utilizing posterior probabilities obtained from each fitted model. We propose a new statistic to measure the adequacy of LCA and develop a variable selection procedure. The effectiveness of the proposed method is also presented through some numerical studies.

Development of a drift-flux model based core thermal-hydraulics code for efficient high-fidelity multiphysics calculation

  • Lee, Jaejin;Facchini, Alberto;Joo, Han Gyu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1487-1503
    • /
    • 2019
  • The methods and performance of a pin-level nuclear reactor core thermal-hydraulics (T/H) code ESCOT employing the drift-flux model are presented. This code aims at providing an accurate yet fast core thermal-hydraulics solution capability to high-fidelity multiphysics core analysis systems targeting massively parallel computing platforms. The four equation drift-flux model is adopted for two-phase calculations, and numerical solutions are obtained by applying the Finite Volume Method (FVM) and the Semi-Implicit Method for Pressure-Linked Equation (SIMPLE)-like algorithm in a staggered grid system. Constitutive models involving turbulent mixing, pressure drop, and vapor generation are employed to simulate key phenomena in subchannel-scale analyses. ESCOT is parallelized by a domain decomposition scheme that involves both radial and axial decomposition to enable highly parallelized execution. The ESCOT solutions are validated through the applications to various experiments which include CNEN $4{\times}4$, Weiss et al. two assemblies, PNNL $2{\times}6$, RPI $2{\times}2$ air-water, and PSBT covering single/two-phase and unheated/heated conditions. The parameters of interest for validation include various flow characteristics such as turbulent mixing, spacer grid pressure drop, cross-flow, reverse flow, buoyancy effect, void drift, and bubble generation. For all the validation tests, ESCOT shows good agreements with measured data in the extent comparable to those of other subchannel-scale codes: COBRA-TF, MATRA and/or CUPID. The execution performance is examined with a mini-sized whole core consisting of 89 fuel assemblies and for an OPR1000 core. It turns out that it is about 1.5 times faster than a subchannel code based on the two-fluid three field model and the axial domain decomposition scheme works as well as the radial one yielding a steady-state solution for the OPR1000 core within 30 s with 104 processors.

Research on aerodynamic force and structural response of SLCT under wind-rain two-way coupling environment

  • Ke, Shitang;Yu, Wenlin;Ge, Yaojun
    • Wind and Structures
    • /
    • v.29 no.4
    • /
    • pp.247-270
    • /
    • 2019
  • Wind-resistant design of existing cooling tower structures overlooks the impacts of rainfall. However, rainstorm will influence aerodynamic force on the tower surface directly. Under this circumstance, the structural response of the super-large cooling tower (SLCT) will become more complicated, and then the stability and safety of SLCT will receive significant impact. In this paper, surrounding wind fields of the world highest (210 m) cooling tower in Northwest China underthree typical wind velocities were simulated based on the wind-rain two-way coupling algorithm. Next, wind-rain coupling synchronous iteration calculations were conducted under 9 different wind speed-rainfall intensity combinations by adding the discrete phase model (DPM). On this basis, the influencing laws of different wind speed-rainfall intensity combinations on wind-driving rain, adhesive force of rain drops and rain pressure coefficients were discussed. The acting mechanisms of speed line, turbulence energy strength as well as running speed and trajectory of rain drops on structural surface in the wind-rain coupling field were disclosed. Moreover, the fitting formula of wind-rain coupling equivalent pressure coefficient of the cooling tower was proposed. A systematic contrast analysis on its 3D distribution pattern was carried out. Finally, coupling model of SLCT under different working conditions was constructed by combining the finite element method. Structural response, buckling stability and local stability of SLCT under different wind velocities and wind speed-rainfall intensity combinations were compared and analyzed. Major research conclusions can provide references to determine loads of similar SLCT accurately under extremely complicated working conditions.

Education Equipment and Its Application for Indoor Position Recognition Using Inertial Measurement Unit Sensor (IMU센서를 이용한 실내 위치 인식 교육용 장비 및 응용)

  • Seo, Bo-In;Yu, YunSeop
    • Journal of Practical Engineering Education
    • /
    • v.10 no.2
    • /
    • pp.119-124
    • /
    • 2018
  • Educational equipment that enables the user or device to recognize the indoor position by using the acceleration and angular velocity of the IMU (Inertial Measurement Unit) sensor is introduced. With this educational equipment, various position recognition and tracking algorithms can be learned and creative engineering design works can be realized. The data value of the IMU sensor is transmitted to the MCU (microcontroller unit) through $I^2C$ (Inter-Integrated Circuit), and the indoor position recognition algorithm is applied by processing the data value through the filter and numerical method. It is then designed to use wireless communication to send and receive processed values and to be recognized by the user. As an example using this equipament, the case of "Implementation and recognition of virtual position using computation of moving direction and distance using IMU sensor" is introduced, and various creative engineering design application is discussed.

Analysis of array invariant-based source-range estimation using a horizontal array (수평 배열을 이용한 배열 불변성 기반의 음원 거리 추정 성능 분석)

  • Gu, Hongju;Byun, Gihoon;Byun, Sung-Hoon;Kim, J.S.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.2
    • /
    • pp.231-239
    • /
    • 2019
  • In sonar systems, the passive ranging of a target is an active research area. This paper analyzed the performance of passive ranging based on an array invariant method for different environmental and sonar parameters. The array invariant developed for source range estimation in shallow water. The advantages of this method are that detailed environmental information is not required, and the real-time ranging is possible since the computational burden is very small. Simulation was performed to verify the algorithm. And this method is applied to sea-going experimental data in 2013 near Jinhae port. This study shows the performance of ranging for source orientation, transmission signal length, and length of a receiver through numerical simulation experiments. Also, the results using nested array and uniform line arrays are compared.

Principal selected response reduction in multivariate regression (다변량회귀에서 주선택 반응변수 차원축소)

  • Yoo, Jae Keun
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.4
    • /
    • pp.659-669
    • /
    • 2021
  • Multivariate regression often appears in longitudinal or functional data analysis. Since multivariate regression involves multi-dimensional response variables, it is more strongly affected by the so-called curse of dimension that univariate regression. To overcome this issue, Yoo (2018) and Yoo (2019a) proposed three model-based response dimension reduction methodologies. According to various numerical studies in Yoo (2019a), the default method suggested in Yoo (2019a) is least sensitive to the simulated models, but it is not the best one. To release this issue, the paper proposes an selection algorithm by comparing the other two methods with the default one. This approach is called principal selected response reduction. Various simulation studies show that the proposed method provides more accurate estimation results than the default one by Yoo (2019a), and it confirms practical and empirical usefulness of the propose method over the default one by Yoo (2019a).