Browse > Article
http://dx.doi.org/10.12989/sss.2019.23.6.615

Performance evaluation of inerter-based damping devices for structural vibration control of stay cables  

Huang, Zhiwen (Key Laboratory for Wind and Bridge Engineering of Hunan Province, College of Civil Engineering, Hunan University)
Hua, Xugang (Key Laboratory for Wind and Bridge Engineering of Hunan Province, College of Civil Engineering, Hunan University)
Chen, Zhengqing (Key Laboratory for Wind and Bridge Engineering of Hunan Province, College of Civil Engineering, Hunan University)
Niu, Huawei (Key Laboratory for Wind and Bridge Engineering of Hunan Province, College of Civil Engineering, Hunan University)
Publication Information
Smart Structures and Systems / v.23, no.6, 2019 , pp. 615-626 More about this Journal
Abstract
Inerter-based damping devices (IBBDs), which consist of inerter, spring and viscous damper, have been extensively investigated in vehicle suspension systems and demonstrated to be more effective than the traditional control devices with spring and viscous damper only. In the present study, the control performance on cable vibration reduction was studied for four different inerter-based damping devices, namely the parallel-connected viscous mass damper (PVMD), series-connected viscous mass damper (SVMD), tuned inerter dampers (TID) and tuned viscous mass damper (TVMD). Firstly the mechanism of the ball screw inerter is introduced. Then the state-space formulation of the cable-TID system is derived as an example for the cable-IBBDs system. Based on the complex modal analysis, single-mode cable vibration control analysis is conducted for PVMD, SVMD, TID and TVMD, and their optimal parameters and the maximum attainable damping ratios of the cable/damper system are obtained for several specified damper locations and modes in combination by the Nelder-Mead simplex algorithm. Lastly, optimal design of PVMD is developed for multi-mode vibration control of cable, and the results of damping ratio analysis are validated through the forced vibration analysis in a case study by numerical simulation. The results show that all the four inerter-based damping devices significantly outperform the viscous damper for single-mode vibration control. In the case of multi-mode vibration control, PVMD can provide more damping to the first four modes of cable than the viscous damper does, and their maximum control forces under resonant frequency of harmonic forced vibration are nearly the same. The results of this study clearly demonstrate the effectiveness and advantages of PVMD in cable vibration control.
Keywords
stay cable; vibration control; inerter; damper; modal damping ratio;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Chen, L., Sun, L.M. and Nagarajaiah, S. (2015), "Cable with discrete negative stiffness device and viscous damper: Passive realization and general characteristics", Smart. Struct. Syst., 15(3), 627-643. http://dx.doi.org/10.12989/sss.2015.15.3.627.   DOI
2 Chen, M.Z.Q., Hu, Y.L., Li, C.Y. and Chen, G.R. (2015), "Performance benefits of using inerter in semiactive suspensions", IEEE T. Contr. Syst. T, 23(4), 1571-1577. doi:10.1109/TCST.2014.2364954   DOI
3 Li, H., Liu, M. and Ou, J.P. (2008), "Negative stiffness characteristics of active and semi-active control systems for stay cables", Struct. Control. Health Monit., 15(2), 120-142. https://doi.org/10.1002/stc.200.   DOI
4 Chen, Z.Q., Huang, Z.W. and Hua X.G. (2015), "Inerter-damperspring passive vibraiton control: its system reliazation with eddy-current mass dampers", Proceedings of the 14th World Conference on Seismic Isolation, Energy dissipation and active control of Structures, 9-11 September 2015, San Diego, USA.
5 Duan, Y.F., Ni, Y.Q., Zhang, H.M., Spencer B.F. and Ko, J.M., (2019b) "Design formulas for vibration control of sagged cables using passive MR dampers", Smart Struct. Syst., Accepted.
6 Duan, Y.F., Ni, Y.Q., Zhang, H.M., Spencer B.F., Jr. and Ko, J.M., (2019a) "Design formulas for vibration control of taut cables using passive MR dampers", Smart Struct. Syst., Accepted.
7 Duan Y.F., Tao J.J., Zhang H.M., Wang S.M. and Yun C.B., (2018), "Real-time hybrid simulation based on vector form intrinsic finite element and field programmable gate array", Struct. Control Health Monit., e2277; https://doi.org/10.1002/stc.2277.
8 Duan, Y.F., Ni, Y.Q. and Ko, J.M. (2005), "State-derivative feedback control of cable vibration using semiactive magnetorheological dampers", Comput.-Aided Civil Infrastruct. Eng., 20(6), 431-449. https://doi.org/10.1111/j.1467-8667.2005.00396.x.   DOI
9 Duan, Y.F., Ni, Y.Q. and Ko, J.M. (2006), "Cable vibration control using magnetorheological dampers", J. Intel. Mat. Syst. Str., 17(4), 321-325.   DOI
10 Li, H., Liu, M., Li, J.H., Guan, X.C. and Ou, J.P. (2007), "Vibration control of stay cables of the shandong binzhou yellow river highway bridge using magnetorheological fluid dampers", J. Bridge Eng., 12(4), 401-409. https://doi.org/10.1061/(ASCE)1084-0702(2007)12:4(401).   DOI
11 Liu, M., Song, G.B. and Li, H. (2007), "Non-model-based semiactive vibration suppression of stay cables using magnetorheological fluid dampers", Smart Mater. Struct., 16(4), 1447-1452.   DOI
12 Lu, L., Duan, Y.F., Spencer, B.F. Jr., Lu, X. and Zhou, Y. (2017), "Inertial mass damper for mitigating cable vibration", Struct. Control. Health Monit., 24(10), https://doi.org/10.1002/stc.1986.
13 Luo, J., Jiang, J.Z. and Macdonald, J.H.G. (2016), "Damping performance of taut cables with passive absorbers incorporating inerters", J. Physics: Conference Series, 744(1).
14 Main, J.A. and Jones, N.P. (2002), "Free vibrations of taut cable with attached damper.I: Linear viscous damper", J. Eng. Mech., 128(10), 1062-1071. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:10(1062).   DOI
15 Matsumoto, M., Shiraishi, N. and Shirato, H. (1992), "Rain-wind induced vibration of cables of cable-stayed bridges", J. Wind Eng. Ind. Aerodyn., 43(1), 2011-2022.   DOI
16 Nakamura, Y., Fukukita, A., Tamura, K., Yamazaki, I., Matsuoka, T., Hiramoto, K. and Sunakoda, K. (2014), "Seismic response control using electromagnetic inertial mass dampers", Earthq. Eng. Struct. D., 43(4), 507-527. https://doi.org/10.1002/eqe.2355.   DOI
17 Ni, Y.Q., Chen, Y., Ko, J.M. and Cao, D.Q. (2002), "Neuro-control of cable vibration using semi-active magneto-rheological dampers", Eng. Struct., 24(3), 295-307. https://doi.org/10.1016/S0141-0296(01)00096-7.   DOI
18 Or, S.W., Duan, Y.F., Ni, Y.Q., Chen, Z.H. and Lam, K.H. (2008), "Development of Magnetorheological dampers with embedded piezoelectric force sensors for structural vibration control", J. Intel. Mat. Syst. Str., 19(11), 1327-1338. https://doi.org/10.1177/1045389X07085673.   DOI
19 Fujino, Y. and Hoang, N. (2008), "Design formulas for damping of a stay cable with a damper", J. Struct. Eng.-ASCE, 134(2), 269-278.   DOI
20 Hwang, J.S., Kim, J. and Kim, Y.M. (2007), "Rotational inertia dampers with toggle bracing for vibration control of a building structure", Eng. Struct., 29(6), 1201-1208. https://doi.org/10.1016/j.engstruct.2006.08.005.   DOI
21 Pasala, D.T.R., Sarlis, A.A., Reinhorn, A.M., Nagarajaiah, S., Constantinou, M.C. and Taylor, D. (2014), "Simulated bilinearelastic behavior in asdof elastic structure using negative stiffness device: Experimental and analytical study", J. Struct. Eng., 140(2), 04013049. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000830.   DOI
22 Sarlis, A.A. (2013), "Negative stiffness device for seismic protection of structures", J. Struct. Eng., 139(7), 1124-1133. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000616.   DOI
23 Shi, X. and Zhu, S. (2015), "Magnetic negative stiffness damper and its application to stay cables", Proceedings of the 11th international workshop on advanced smart materials and smart structures technology.
24 Smith, M.C. (2002), "Synthesis of mechanical networks: The inerter", IEEE T. Autom. Control, 47(10), 1648-1662. doi:10.1109/TAC.2002.803532.   DOI
25 Smith, M.C. and Wang, F.C. (2004), "Performance benefits in passive vehicle suspensions employing inerters", Vehicle Syst. Dyn., 42(4), 235-257. https://doi.org/10.1080/00423110412331289871.   DOI
26 Tabatabai, H. and Mehrabi, A.B. (2000), "Design of mechanical viscous dampers for stay cables", J. Bridge Eng., 5(2), 114-123. https://doi.org/10.1061/(ASCE)1084-0702(2000)5:2(114).   DOI
27 Krenk, S. and Hogsberg, J.R. (2005), "Damping of cables by a transverse force", J. Eng. Mech.-ASCE, 131(4), 340-348. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:4(340).   DOI
28 Ikago, K., Saito, K. and Inoue, N. (2012), "Seismic control of single-degree-of-freedom structure using tuned viscous mass damper", Earthq. Eng. Struct. D., 41(3), 453-474. https://doi.org/10.1002/eqe.1138.   DOI
29 Johnson, E.A., Baker, G.A., Spencer, B.F. Jr. and Fujino, Y. (2007), "Semiactive damping of stay cables", J. Eng. Mech.-ASCE, 133(1), 1-11. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:1(1).   DOI
30 Krenk, S. (2000), "Vibrations of a taut cable with an external damper", J. Appl. Mech., 67(4), 772.   DOI
31 Lagarias, J.C., Reeds, J.A., Wright, M.H. and Wright, P.E. (1998), "Convergence properties of the nelder--mead simplex method in low dimensions", SIAM J. Optim., 9(1), 112-147. https://doi.org/10.1137/S1052623496303470.   DOI
32 Lazar, I.F., Neild, S.A. and Wagg, D.J. (2014), "Using an inerterbased device for structural vibration suppression", Earthq. Eng. Struct. D., 43(8), 1129-1147. https://doi.org/10.1002/eqe.2390.   DOI
33 Lazar, I.F., Neild, S.A. and Wagg, D.J. (2016), "Vibration suppression of cables using tuned inerter dampers", Eng. Struct., 122, 62-71. https://doi.org/10.1016/j.engstruct.2016.04.017.   DOI
34 Fournier, J.A. and Cheng, S.H. (2014), "Impact of damper stiffness and damper support stiffness on the efficiency of a linear viscous damper in controlling stay cable vibrations", J. Bridge Eng., 19(4), 12. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000562.
35 Weber, F. and Boston, C. (2011), "Clipped viscous damping with negative stiffness for semi-active cable damping", Smart Mater. Struct., 20(4), 13.
36 Takewaki, I., Murakami, S., Yoshitomi, S. and Tsuji, M. (2012), "Fundamental mechanism of earthquake response reduction in building structures with inertial dampers", Struct. Control Health Monit., 19(6), 590-608. https://doi.org/10.1002/stc.457.   DOI
37 Wang, F.C., Liao, M.K., Liao, B.H., Su, W.J. and Chan, H.A. (2009), "The performance improvements of train suspension systems with mechanical networks employing inerters", Vehicle Syst. Dyn., 47(7), 805-830. https://doi.org/10.1080/00423110802385951.   DOI
38 Wang, X.Y., Ni, Y.Q., Ko, J.M. and Chen, Z.Q. (2005), "Optimal design of viscous dampers for multi-mode vibration control of bridge cables", Eng. Struct., 27(5), 792-800. https://doi.org/10.1016/j.engstruct.2004.12.013.   DOI
39 Weber, F., Distl, H., Feltrin, G. and Motavalli, M. (2009), "Cycle energy control of magnetorheological dampers on cables", Smart Mater. Struct., 18(1), 16.
40 Weber, F., Feltrin, G., Maslanka, M., Fobo, W. and Distl, H. (2009), "Design of viscous dampers targeting multiple cable modes", Eng. Struct., 31(31), 2797-2800. https://doi.org/10.1016/j.engstruct.2009.06.020.   DOI
41 Xu, Y. L. and Yu, Z. (1998), "Vibration of inclined sag cables with oil dampers in cable-stayed bridges", J. Bridge Eng., 3(4), 194-203. https://doi.org/10.1061/(ASCE)1084-0702(1998)3:4(194).   DOI
42 Xu, Y.L. and Zhou, H.J. (2007), "Damping cable vibration for a cable-stayed bridge using adjustable fluid dampers", J. Sound Vib., 306(1-2), 349-360. https://doi.org/10.1016/j.jsv.2007.05.032.   DOI
43 Yu, Z. and Xu, Y.L. (1998), "Mitigation of three-dimensional vibration of inclined sag cable using discrete oil dampers - i. Formulation", J. Sound Vib., 214(4), 659-673. https://doi.org/10.1006/jsvi.1998.1609.   DOI
44 Chen, Z.Q., Wang, X.Y., Ko, J.M., Ni, Y.Q., Spencer B.F., Jr., Yang, G. and Hu, J.H. (2004), "Mr damping system for mitigating wind-rain induced vibration on dongting lake cablestayed bridge", Wind Struct., 7(5), 293-304.   DOI
45 Zhou, P. and Li, H. (2016), "Modeling and control performance of a negative stiffness damper for suppressing stay cable vibrations", Struct. Control. Health Monit., 23(4), 764-782. https://doi.org/10.1002/stc.1809.   DOI
46 Chen, M.Z., Papageorgiou, C., Scheibe, F., Wang, F.C. and Smith, M.C. (2009), "The missing mechanical circuit element", IEEE Circuits Syst. Magazine, 9(1), 10-26. doi:10.1109/MCAS.2008.931738   DOI