• Title/Summary/Keyword: Numerical algorithm

Search Result 4,147, Processing Time 0.031 seconds

Development of Rainfall-runoff Analysis Algorithm on Road Surface (도로 표면 강우 유출 해석 알고리즘 개발)

  • Jo, Jun Beom;Kim, Jung Soo;Kwak, Chang Jae
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.4
    • /
    • pp.223-232
    • /
    • 2021
  • In general, stormwater flows to the road surface, especially in urban areas, and it is discharged through the drainage grate inlets on roads. The appropriate evaluation of the road drainage capacity is essential not only in the design of roads and inlets but also in the design of sewer systems. However, the method of road surface flow analysis that reflects the topographical and hydraulic conditions might not be fully developed. Therefore, the enhanced method of road surface flow analysis should be presented by investigating the existing analysis method such as the flow analysis module (uniform; varied) and the flow travel time (critical; fixed). In this study, the algorithm based on varied and uniform flow analysis was developed to analyze the flow pattern of road surface. The numerical analysis applied the uniform and varied flow analysis module and travel time as parameters were conducted to estimate the characteristics of rainfall-runoff in various road conditions using the developed algorithm. The width of the road (two-lane (6 m)) and the slope of the road (longitudinal slope of road 1 - 10%, transverse slope of road 2%, and transverse slope of gutter 2 - 10%) was considered. In addition, the flow of the road surface is collected from the gutter along the road slope and drained through the gutter in the downstream part, and the width of the gutter was selected to be 0.5 m. The simulation results were revealed that the runoff characteristics were affected by the road slope conditions, and it was found that the varied flow analysis module adequately reflected the gutter flow which is changed along the downstream caused by collecting of road surface flow at the gutter. The varied flow analysis module simulated 11.80% longer flow travel time on average (max. 23.66%) and 4.73% larger total road surface discharge on average (max. 9.50%) than the uniform flow analysis module. In order to accurately estimate the amount of runoff from the road, it was appropriate to perform flow analysis by applying the critical duration and the varied flow analysis module. The developed algorithm was expected to be able to be used in the design of road drainage because it was accurately simulated the runoff characteristics on the road surface.

Optimum Design of Two Hinged Steel Arches with I Sectional Type (SUMT법(法)에 의(依)한 2골절(滑節) I형(形) 강재(鋼材) 아치의 최적설계(最適設計))

  • Jung, Young Chae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.65-79
    • /
    • 1992
  • This study is concerned with the optimal design of two hinged steel arches with I cross sectional type and aimed at the exact analysis of the arches and the safe and economic design of structure. The analyzing method of arches which introduces the finite difference method considering the displacements of structure in analyzing process is used to eliminate the error of analysis and to determine the sectional force of structure. The optimizing problems of arches formulate with the objective functions and the constraints which take the sectional dimensions(B, D, $t_f$, $t_w$) as the design variables. The object functions are formulated as the total weight of arch and the constraints are derived by using the criteria with respect to the working stress, the minimum dimension of flange and web based on the part of steel bridge in the Korea standard code of road bridge and including the economic depth constraint of the I sectional type, the upper limit dimension of the depth of web and the lower limit dimension of the breadth of flange. The SUMT method using the modified Newton Raphson direction method is introduced to solve the formulated nonlinear programming problems which developed in this study and tested out throught the numerical examples. The developed optimal design programming of arch is tested out and examined throught the numerical examples for the various arches. And their results are compared and analyzed to examine the possibility of optimization, the applicablity, the convergency of this algorithm and with the results of numerical examples using the reference(30). The correlative equations between the optimal sectional areas and inertia moments are introduced from the various numerical optimal design results in this study.

  • PDF

Evaluating Reverse Logistics Networks with Centralized Centers : Hybrid Genetic Algorithm Approach (집중형센터를 가진 역물류네트워크 평가 : 혼합형 유전알고리즘 접근법)

  • Yun, YoungSu
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.55-79
    • /
    • 2013
  • In this paper, we propose a hybrid genetic algorithm (HGA) approach to effectively solve the reverse logistics network with centralized centers (RLNCC). For the proposed HGA approach, genetic algorithm (GA) is used as a main algorithm. For implementing GA, a new bit-string representation scheme using 0 and 1 values is suggested, which can easily make initial population of GA. As genetic operators, the elitist strategy in enlarged sampling space developed by Gen and Chang (1997), a new two-point crossover operator, and a new random mutation operator are used for selection, crossover and mutation, respectively. For hybrid concept of GA, an iterative hill climbing method (IHCM) developed by Michalewicz (1994) is inserted into HGA search loop. The IHCM is one of local search techniques and precisely explores the space converged by GA search. The RLNCC is composed of collection centers, remanufacturing centers, redistribution centers, and secondary markets in reverse logistics networks. Of the centers and secondary markets, only one collection center, remanufacturing center, redistribution center, and secondary market should be opened in reverse logistics networks. Some assumptions are considered for effectively implementing the RLNCC The RLNCC is represented by a mixed integer programming (MIP) model using indexes, parameters and decision variables. The objective function of the MIP model is to minimize the total cost which is consisted of transportation cost, fixed cost, and handling cost. The transportation cost is obtained by transporting the returned products between each centers and secondary markets. The fixed cost is calculated by opening or closing decision at each center and secondary markets. That is, if there are three collection centers (the opening costs of collection center 1 2, and 3 are 10.5, 12.1, 8.9, respectively), and the collection center 1 is opened and the remainders are all closed, then the fixed cost is 10.5. The handling cost means the cost of treating the products returned from customers at each center and secondary markets which are opened at each RLNCC stage. The RLNCC is solved by the proposed HGA approach. In numerical experiment, the proposed HGA and a conventional competing approach is compared with each other using various measures of performance. For the conventional competing approach, the GA approach by Yun (2013) is used. The GA approach has not any local search technique such as the IHCM proposed the HGA approach. As measures of performance, CPU time, optimal solution, and optimal setting are used. Two types of the RLNCC with different numbers of customers, collection centers, remanufacturing centers, redistribution centers and secondary markets are presented for comparing the performances of the HGA and GA approaches. The MIP models using the two types of the RLNCC are programmed by Visual Basic Version 6.0, and the computer implementing environment is the IBM compatible PC with 3.06Ghz CPU speed and 1GB RAM on Windows XP. The parameters used in the HGA and GA approaches are that the total number of generations is 10,000, population size 20, crossover rate 0.5, mutation rate 0.1, and the search range for the IHCM is 2.0. Total 20 iterations are made for eliminating the randomness of the searches of the HGA and GA approaches. With performance comparisons, network representations by opening/closing decision, and convergence processes using two types of the RLNCCs, the experimental result shows that the HGA has significantly better performance in terms of the optimal solution than the GA, though the GA is slightly quicker than the HGA in terms of the CPU time. Finally, it has been proved that the proposed HGA approach is more efficient than conventional GA approach in two types of the RLNCC since the former has a GA search process as well as a local search process for additional search scheme, while the latter has a GA search process alone. For a future study, much more large-sized RLNCCs will be tested for robustness of our approach.

Rehabilitation Priority Decision Model for Sewer Systems (하수관거시스템 개량 우선순위 결정 모형)

  • Lee, Jung-Ho;Park, Moo-Jong;Kim, Joong-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.7-14
    • /
    • 2008
  • The main objective of sewer rehabilitation is to improve its function while eliminating inflow/infiltration (I/I). If we can identify the amount of I/I for an individual pipe, it is possible to estimate the I/Is of sub-areas clearly. However, in real, the amount of I/I for an individual pipe is almost impossible to be obtained due to the limitation of cost and time. In this study, I/I occurrence of each sewer pipe is estimated using AHP (Analytic Hierarch Process) and RPDM (Rehabilitation Priority Decision Model for sewer system) was developed using the estimated I/I of each pipe to perform the efficient sewer rehabilitation. Based on the determined amount of I/I for an individual pipe, the RPDM determines the optimal rehabilitation priority (ORP) using a genetic algorithm for sub-areas in term of minimizing the amount of I/I occurring while the rehabilitation process is performed. The benefit obtained by implementing the ORP for rehabilitation of sub-areas is estimated by the only waste water treatment cost (WWTC) of I/I which occurs during the sewer rehabilitation period. The results of the ORP were compared with those of a numerical weighting method (NWM) which is the decision method for the rehabilitation priority in the general sewer rehabilitation practices and the worst order which are other methods to determine the rehabilitation order of sub-areas in field. The ORP reduced the WWTC by 22% compared to the NWM and by 40% compared to the worst order.

The Numerical Study on the Flow Control of Ammonia Injection According to the Inlet NOx Distribution in the DeNOx Facilities (탈질설비 내에서 입구유동 NOx 분포에 따른 AIG유동제어의 전산해석적 연구)

  • Seo, Deok-Cheol;Kim, Min-Kyu;Chung, Hee-Taeg
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.324-330
    • /
    • 2019
  • The selective catalytic reduction system is a highly effective technique for the denitrification of the flue gases emitted from the industrial facilities. The distribution of mixing ratio between ammonia and nitrogen oxide at the inlet of the catalyst layers is important to the efficiency of the de-NOx process. In this study, computational analysis tools have been applied to improve the uniformity of NH3/NO molar ratio by controlling the flow rate of the ammonia injection nozzles according to the distribution pattern of the nitrogen oxide in the inlet flue gas. The root mean square of NH3/NO molar ratio was chosen as the optimization parameter while the design of experiment was used as the base of the optimization algorithm. As the inlet conditions, four (4) types of flow pattern were simulated; i.e. uniform, parabolic, upper-skewed, and random. The flow rate of the eight nozzles installed in the ammonia injection grid was adjusted to the inlet conditions. In order to solve the two-dimensional, steady, incompressible, and viscous flow fields, the commercial software ANSYS-FLUENT was used with the k-𝜖 turbulence model. The results showed that the improvement of the uniformity ranged between 9.58% and 80.0% according to the inlet flow pattern of the flue gas.

Development of an Artificial Neural Expert System for Rational Determination of Lateral Earth Pressure Coefficient (합리적인 측압계수 결정을 위한 인공신경 전문가 시스템의 개발)

  • 문상호;문현구
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.99-112
    • /
    • 1999
  • By using 92 values of lateral earth pressure coefficient(K) measured in Korea, the tendency of K with varying depth is analyzed and compared with the range of K defined by Hoek and Brown. The horizontal stress is generally larger than the vertical stress in Korea : About 84 % of K values are above 1. In this study, the theory of elasto-plasticity is applied to analyze the variation of K values, and the results are compared with those of numerical analysis. This reveals that the erosion, sedimentation and weathering of earth crust are important factors in the determination of K values. Surface erosion, large lateral pressure and good rock mass increase the K values, but sedimentation decreases the K values. This study enable us to analyze the effects of geological processes on the K values, especially at shallow depth where underground excavation takes place. A neural network expert system using multi-layer back-propagation algorithm is developed to predict the K values. The neural network model has a correlation coefficient above 0.996 when it is compared with measured data. The comparison with 9 measured data which are not included in the back-propagation learning has shown an average inference error of 20% and the correlation coefficient above 0.95. The expert system developed in this study can be used for reliable determination of K values.

  • PDF

A fundamental study on the ventilation analysis method for the network-type tunnel - focused on the none hardy-cross method (네트워크형 터널의 환기해석 방법에 대한 기초연구-비 Hardy-Cross 방법을 중심으로)

  • Kim, Hyo-Gyu;Choi, Pan-Gyu;Ryu, Ji-Oh;Lee, Chang-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.3
    • /
    • pp.291-303
    • /
    • 2016
  • Recently, various forms of diverging sections in tunnels have been designed as the demand for underground passageway in urban areas increases. Therefore, the complexity of the ventilation system in tunnels with diverging sections requires a ventilation analysis method different from the conventional method for the straight tunnels. None of the domestic and foreign tunnel ventilation design standards specifies the method for the ventilation network analysis, and the numerical analysis methods have been most widely used. This paper aims at reviewing the ventilation network analytical method applicable as the design standard. The proposed method is based on the characteristic equations rather than the numerical analysis. Thanks to the advantages of easy application, the Hardy-Cross method has been widely applied in the fields of mine ventilation and tunnel ventilation. However, limitations with the cutting errors in the Taylor series expansion and the convergence problem mainly caused by the mesh selection algorithm have been reported. Therefore, this paper examines the applicability of the ventilation analysis method for network-type tunnels with the gradient method that can analyze flow rate and pressure simultaneously without the configuration of mesh. A simple ventilation analysis method for network-type tunnels is proposed.

Study on Development of Automated Program Model for Measuring Sensibility Preference of Portrait (인물사진의 감성 선호도 측정 자동화 프로그램 모형 개발 연구)

  • Lee, Chang-Seop;Jung, Da-Yeon;Lee, Eun-Ju;Har, Dong-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.9
    • /
    • pp.34-43
    • /
    • 2018
  • The purpose of this study is to develop measurement program model for a human being-oriented product through the between the evaluation factors of portrait and general preferences of portraits. We added new items that are essential to the image evaluation by analysing previous studies. In this study, We identified the facial focus for the first step, and the portraits were evaluated by dividing it into objective and subjective image quality evaluation items. RSC Contrast and Dynamic Range were selected as the Objective evaluation items, and the numerical values of each image could be evaluation items, and the numerical values of each image could be evaluated by statistical analysis method. Facial Exposure, Composition, Position, Ratio, Out of focus, and Emotions and Color tone of image were selected as the Subjective evaluation items. In addition, a new face recognition algorithm is applied to judge the emotions, the manufacturer can get the information that they can analyze the people's emotion. The program developed to quantitatively and qualitatively compiles the evaluation items when evaluating portraits. The program that I developed through this study can be used an analysis program that produce the data for developing the evaluation model of the product more suitable to general users of imaging systems.

Measurement Algorithms of Sizing removed state using Image Process And Development of Carbon fibers with Electromagnetic shielding Performance (영상처리를 이용한 사이징 제거 상태 측정 알고리즘과 전자파 차폐 성능을 갖는 탄소 섬유 개발)

  • Cho, Joon-Ho;Jeon, Kwan-Goo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.95-101
    • /
    • 2017
  • In this paper, the sizing removal condition for the pretreatment of composite materials is obtained numerically by applying an image processing algorithm and nickel-plated carbon fiber is fabricated by a dry process method to enhance its electromagnetic shielding performance. Sizings that are wrapped in a polymer type material during the manufacturing of carbon fiber should be removed for dry coating. A numerical value, that is the correlation, can be obtained by determining the regular pattern of the carbon fiber in the image taken by a scanning electron microscope (SEM) after the sizing is removed. The application of the proposed numerical method to the SEM image of the fiber after the sizing is removed with solution, compressed air, solution and compressed air (hybrid), showed that this method of eliminating the sizing is superior to the hybrid method. Then, by spreading the carbon fiber roll with the sizing removed, we were able to produce nickel plated carbon fiber by the roll-to-roll sputtering method. The electromagnetic shielding performance of the fabricated 30, 40 and 100 nickel coated carbon fibers was measured. The Korea Advanced Institute of Science and Technology evaluated the electromagnetic shielding performance of the 100 nickel-coated carbon fiber to have a maximum value of 73.2 (dB) and a minimum value of 66.7 (dB). This is similar to the electromagnetic shielding rate of copper and shows that this material can be used as a cable for EV / HEV automobiles.

A Virtual Grouping Scheme for Improving the Performance of IEEE 802.11 Distributed Coordination Function (IEEE 802.11 DCF의 성능 향상을 위한 가상 그룹 방법)

  • 김선명;조영종
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.8
    • /
    • pp.9-18
    • /
    • 2004
  • The IEEE 802.11 Distributed Coordination Function(DCF) protocol provides a contention-based distribution channel access mechanism for stations to share the wireless medium. However, the performance of the DCF drops dramatically in terms of throughput, delay and delay jitter as the number of active stations becomes large. In this paper, we propose a simple and effective scheme, called DCF/VG(Distributed Coordination Function with Virtual Group), for improving the performance of the IEEE 802.11 DCF mechanism. In this scheme, each station independently decides the virtual group cycle using the information provided by the carrier sensing mechanism. The virtual group cycle consists of one or more virtual groups and a virtual group includes an idle period and a busy period. Each station operates in only one out of several virtual groups of the virtual group cycle and does not operate in the others. In other words, each station decreases its backoff counter and tries to transmit a packet only in its virtual group like the IEEE 802.11 DCF. Performance of the proposed scheme is investigated by numerical analysis and simulation. Numerical and simulation results show that the proposed scheme is very effective and has high throughput and low delay and jitter under a wide range of contention level.