DOI QR코드

DOI QR Code

Evaluating Reverse Logistics Networks with Centralized Centers : Hybrid Genetic Algorithm Approach

집중형센터를 가진 역물류네트워크 평가 : 혼합형 유전알고리즘 접근법

  • Yun, YoungSu (Division of Business Administration, Chosun University)
  • 윤영수 (조선대학교 경상대학 경영학부)
  • Received : 2013.08.28
  • Accepted : 2013.11.05
  • Published : 2013.12.31

Abstract

In this paper, we propose a hybrid genetic algorithm (HGA) approach to effectively solve the reverse logistics network with centralized centers (RLNCC). For the proposed HGA approach, genetic algorithm (GA) is used as a main algorithm. For implementing GA, a new bit-string representation scheme using 0 and 1 values is suggested, which can easily make initial population of GA. As genetic operators, the elitist strategy in enlarged sampling space developed by Gen and Chang (1997), a new two-point crossover operator, and a new random mutation operator are used for selection, crossover and mutation, respectively. For hybrid concept of GA, an iterative hill climbing method (IHCM) developed by Michalewicz (1994) is inserted into HGA search loop. The IHCM is one of local search techniques and precisely explores the space converged by GA search. The RLNCC is composed of collection centers, remanufacturing centers, redistribution centers, and secondary markets in reverse logistics networks. Of the centers and secondary markets, only one collection center, remanufacturing center, redistribution center, and secondary market should be opened in reverse logistics networks. Some assumptions are considered for effectively implementing the RLNCC The RLNCC is represented by a mixed integer programming (MIP) model using indexes, parameters and decision variables. The objective function of the MIP model is to minimize the total cost which is consisted of transportation cost, fixed cost, and handling cost. The transportation cost is obtained by transporting the returned products between each centers and secondary markets. The fixed cost is calculated by opening or closing decision at each center and secondary markets. That is, if there are three collection centers (the opening costs of collection center 1 2, and 3 are 10.5, 12.1, 8.9, respectively), and the collection center 1 is opened and the remainders are all closed, then the fixed cost is 10.5. The handling cost means the cost of treating the products returned from customers at each center and secondary markets which are opened at each RLNCC stage. The RLNCC is solved by the proposed HGA approach. In numerical experiment, the proposed HGA and a conventional competing approach is compared with each other using various measures of performance. For the conventional competing approach, the GA approach by Yun (2013) is used. The GA approach has not any local search technique such as the IHCM proposed the HGA approach. As measures of performance, CPU time, optimal solution, and optimal setting are used. Two types of the RLNCC with different numbers of customers, collection centers, remanufacturing centers, redistribution centers and secondary markets are presented for comparing the performances of the HGA and GA approaches. The MIP models using the two types of the RLNCC are programmed by Visual Basic Version 6.0, and the computer implementing environment is the IBM compatible PC with 3.06Ghz CPU speed and 1GB RAM on Windows XP. The parameters used in the HGA and GA approaches are that the total number of generations is 10,000, population size 20, crossover rate 0.5, mutation rate 0.1, and the search range for the IHCM is 2.0. Total 20 iterations are made for eliminating the randomness of the searches of the HGA and GA approaches. With performance comparisons, network representations by opening/closing decision, and convergence processes using two types of the RLNCCs, the experimental result shows that the HGA has significantly better performance in terms of the optimal solution than the GA, though the GA is slightly quicker than the HGA in terms of the CPU time. Finally, it has been proved that the proposed HGA approach is more efficient than conventional GA approach in two types of the RLNCC since the former has a GA search process as well as a local search process for additional search scheme, while the latter has a GA search process alone. For a future study, much more large-sized RLNCCs will be tested for robustness of our approach.

본 연구에서는 집중형 센터를 가진 역물류네트워크(Reverse logistics network with centralized centers : RLNCC)를 효율적을 해결하기 위한 혼합형 유전알고리즘(Hybrid genetic algorithm : HGA) 접근법을 제안한다. 제안된 HGA에서는 유전알고리즘(Genetic algorithm : GA)이 주요한 알고리즘으로 사용되며, GA 실행을 위해 0 혹은 1의 값을 가질 수 있는 새로운 비트스트링 표현구조(Bit-string representation scheme), Gen and Chang(1997)이 제안한 확장샘플링공간에서의 우수해 선택전략(Elitist strategy in enlarged sampling space) 2점 교차변이 연산자(Two-point crossover operator), 랜덤 돌연변이 연산자(Random mutation operator)가 사용된다. 또한 HGA에서는 혼합형 개념 적용을 위해 Michalewicz(1994)가 제안한 반복적언덕오르기법(Iterative hill climbing method : IHCM)이 사용된다. IHCM은 지역적 탐색기법(Local search technique) 중의 하나로서 GA탐색과정에 의해 수렴된 탐색공간에 대해 정밀하게 탐색을 실시한다. RLNCC는 역물류 네트워크에서 수집센터(Collection center), 재제조센터(Remanufacturing center), 재분배센터(Redistribution center), 2차 시장(Secondary market)으로 구성되며, 이들 각 센터 및 2차 시장들 중에서 하나의 센터 및 2차 시장만 개설되는 형태를 가지고 있다. 이러한 형태의 RLNCC는 혼합정수계획법(Mixed integer programming : MIP)모델로 표현되며, MIP 모델은 수송비용, 고정비용, 제품처리비용의 총합을 최소화하는 목적함수를 가지고 있다. 수송비용은 각 센터와 2차 시장 간에 제품수송에서 발생하는 비용을 의미하며, 고정비용은 각 센터 및 2차 시장의 개설여부에 따라 결정된다. 예를 들어 만일 세 개의 수집센터(수집센터 1, 2, 3의 개설비용이 각각 10.5, 12.1, 8.9)가 고려되고, 이 중에서 수집센터 1이 개설되고, 나머지 수집센터 2, 3은 개설되지 않을 경우, 전체고정비용은 10.5가 된다. 제품처리비용은 고객으로부터 회수된 제품을 각 센터 및 2차 시장에서 처리할 경우에 발생되는 비용을 의미한다. 수치실험에서는 본 연구에서 제안된 HGA접근법과 Yun(2013)의 연구에서 제안한 GA접근법이 다양한 수행도 평가 척도에 의해 서로 비교, 분석된다. Yun(2013)이 제안한 GA는 HGA에서 사용되는 IHCM과 같은 지역적탐색기법을 가지지 않는 접근법이다. 이들 두 접근법에서 동일한 조건의 실험을 위해 총세대수 : 10,000, 집단의 크기 : 20, 교차변이 확률 : 0.5, 돌연변이 확률 : 0.1, IHCM을 위한 탐색범위 : 2.0이 사용되며, 탐색의 랜덤성을 제거하기 위해 총 20번의 반복실행이 이루어 졌다. 사례로 제시된 두 가지 형태의 RLNCC에 대해 GA와 HGA가 각각 실행되었으며, 그 실험결과는 본 연구에서 제안된 HGA가 기존의 접근법인 GA보다 더 우수하다는 것이 증명되었다. 다만 본 연구에서는 비교적 규모가 작은 RLNCC만을 고려하였기에 추후 연구에서는 보다 규모가 큰 RLNCC에 대해 비교분석이 이루어 져야 할 것이다.

Keywords

References

  1. Amini, M. M., D. Retzlaff-Roberts and C. C. Bienstock, "Designing a reverse logistics operation for short cycle time repair services," International Journal of Production Economics, Vol.96, No.3(2005), 367-380. https://doi.org/10.1016/j.ijpe.2004.05.010
  2. Davis, L., Handbook of Genetic Algorithms, Van Nostrand Reinhold, 1991.
  3. De Jong, K. A., Analysis of the Behavior of a Class of Genetic Adaptive Systems, PhD Thesis, University of Michigan(University Microfilms No.76-9381), 1975.
  4. Gen, M. and R. Cheng, Genetic Algorithms and Engineering Design, John Wiley and Son, 1997.
  5. Grefenstette, J. J., "Optimization of control parameters for genetic algorithms," IEEE Transactions on Systems, Man, Cybernetics, Vol.16, No.1(1986), 122-128. https://doi.org/10.1109/TSMC.1986.289288
  6. Han, Y. H. A., "Cooperative co-evolutionary algorithm for optimizing a reverse logistics network model," Korean Management Science Review, Vol.27, No.3(2010), 15-31.
  7. James, D. E., Distribution Channel Considerations, In Managing Product Recalls, The Conference Board, NY, 1974.
  8. Jayaraman, V., R. A. Patterson and E. Rolland, "The design of reverse distribution networks : models and solution procedures," European Journal of Operational Research, Vol.150 (2003), 128-149. https://doi.org/10.1016/S0377-2217(02)00497-6
  9. Jung, Y. H. and H. C. Lee, "A study on returned product of reverse logistics network in e-retail industries," Journal of the Korean Society of Supply Chain Management, Vol.5, No.2 (2005), 29-42.
  10. Kim, J. D., H. S. Choi and D. H. Lee, "A case study on the stochastic vehicle routing in a refuse collection system," Journal of the Korean Society of Supply Chain Management, Vol.7, No.2(2007), 57-65.
  11. Krikke, H. R., E. J. Kooi and P. C. Schuur, "Network design in reverse logistics : a quantitative model," Working Paper, Erasmus Universiteit Rotterdam, 1999.
  12. Lee, C. Y., S. Y. Yun and M. Gen, "Reliability optimization design for complex systems by Hybrid GA with fuzzy logic control and local search," IEICE Transaction on Fundamentals of Electronics Communications and Computer Sciences, E85-A(4), (2002), 880-891.
  13. Lee, J. E., M. Gen and K. G. Rhee, "Network model and optimization of reverse logistics by hybrid genetic algorithm," Computers and Industrial Engineering, Vol.56(2009), 951-964. https://doi.org/10.1016/j.cie.2008.09.021
  14. Li, B. and W. Jiang, "A novel stochastic optimization algorithm," IEEE Transactions on Systems, Man, and Cybernetics-Part B : Cybernetics, Vol.30, No.1(2000), 193-198. https://doi.org/10.1109/3477.826960
  15. Lim, Y. G. and B. J. Jung, "A study of locationallocation model in integrated logistics network considering reverse logistics," 2012 KORMS(Korean Operations and Management Science Society) Autumn Conference, (2012), 765-772.
  16. Michalewicz, Z., Genetic Algorithms+Data Structures = Evolution Program, Second Extended Edition, Spring-Verlag, 1994.
  17. Min, H., "A bicriterion reverse distribution model for product recall," OMEGA, Vol.17, No.5 (1989), 483-490. https://doi.org/10.1016/0305-0483(89)90044-3
  18. Min, H., H. J. Ko and C. S. Ko, "A genetic algorithm approach to developing the multiechelon reverse logistics network for product returns," OMEGA, Vol.34(2006), 56-69. https://doi.org/10.1016/j.omega.2004.07.025
  19. Na, H. Y. and S. H. Lee, "A Location-Routing Problem for Logistics Network Integrating Forward and Reverse Flow," IE Interfaces, Vol.22, No.2(2009), 153-164.
  20. Rogers, D. S. and R. S. Tibben-Lembke, Going Backwards; Reverse Logistics Trends and Practices, RLEC Press, Pittsburgh, 1999.
  21. Srivastava, S. K., "Green supply-chain management : a state-of-the-art literature review," International Journal of Management Reviews, Vol.9, No.1(2007), 53-80. https://doi.org/10.1111/j.1468-2370.2007.00202.x
  22. Srivastava, S. K., "Network design for reverse logistics," OMEGA, Vol.36(2008), 535-548. https://doi.org/10.1016/j.omega.2006.11.012
  23. Yen, J., J. C. Liao, B. J. Lee and D. Randolph, "A hybrid approach to modeling metabolic systems using a genetic algorithm and simplex method," IEEE Transactions on Systems, Man, and Cybernetics-Part B : Cybernetics, Vol.28, No.2(1998), 173-191.
  24. Yun, Y. S., "Evaluating reverse logistics networks using genetic algorithm approach," Journal of the Korean Society of Supply Chain Management, Vol.13, No.1(2013), 1-14.
  25. Yun, Y. S., R. K. Hwang, M. Gen and J. B. Jo, "Evaluating reverse logistics networks with centralized/decentralized centers : an genetic algorithm approach," The 9th International Conference on Intelligent Manufacturing and Logistics Systems, Shanghai, China, (2013), 516-524.