• Title/Summary/Keyword: Numerical Perturbation

Search Result 407, Processing Time 0.03 seconds

Linear and Nonlinear Wave Pressure Distributions Acting on Vertical Caisson of Large Size in 3-Dimensional Wave Fields (3차원파동장에 있어서 대형연직케이슨에 작용하는 선형 및 비선형의 파압분포특성에 관한 연구)

  • 김도삼;신동훈;이봉재
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.114-119
    • /
    • 2001
  • Goda formula (Goda, 1973) has been used in the determination of wave pressures acting on a large size caisson such as the pier of the cable stayed bridge at sea. Goda formula, however, is to evaluate the wave pressures acting the infinite vertical caisson of composite breakwater so that it can`t be applied to a large caisson with finite width and length because of diffraction effects. In the present study, three dimensional nonlinear frequence domain method based on perturbation method and boundary integral method is applied to the computation of the linear and nonlinear wave pressures acting on the front of a large size caisson under the variation of its width and length, and angle of incident wave. The numerical results are compared to Goda\`s ones, and then the characteristics of wave pressure distributions acting on a large size caisson are discussed.

  • PDF

Characteristics of Leakage and Rotordynamic Coefficients for Annular Seal with Multi-Land (이종 표면을 갖는 실의 특성해석)

  • Ha, Tae Woong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.447-452
    • /
    • 2002
  • An honeycomb/smooth land seal alternating with the honeycomb seal is suggested for structural enhancement in high pressure turbomachinery. Governing equations are derived for an honeycomb/smooth land annular gas seal based on Hirs' lubrication theory and Moody's friction factor model for smooth land and empirical friction factor model for honeycomb land. By using a perturbation analysis and a numerical integration method, the governing equations are solved to yield leakage and the corresponding dynamic coefficients developed by the seal. Theoretical results show that leakage is increasing and rotordynamic stability is decreasing as increasing the length of smooth land part in the honeycomb/smooth land seal.

  • PDF

Characteristics of Leakage and Rotordynamic Coefficients for Annular Seal with Honeycomb/Smooth Land (Honeycomb/Smooth 표면을 갖는 비접촉 환상 실의 특성해석)

  • Ha, Tae-Woong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.4 s.17
    • /
    • pp.40-46
    • /
    • 2002
  • An honeycomb/smooth land seal alternating with the honeycomb seal is suggested for structural enhancement in high pressure turbomachinery. Governing equations are derived for an honeycomb/smooth land annular gas seal based on Hirs' lubrication theory and Moody's friction factor model for smooth land and empirical friction factor model for honeycomb land. By using a perturbation analysis and a numerical integration method, the governing equations are solved to yield leakage and the corresponding dynamic coefficients developed by the seal. Theoretical results show that the leakage increases and rotordynamic stability decreases as increasing the length of smooth land part in the honeycomb/smooth land seal.

Analysis of Electromagnetic Wave Scattering from a Sea Surface Using a Monte-Carlo FDTD Technique

  • Choi Dong-Muk;Kim Che-Young;Kim Dong-Il;Jeon Joong-Sung
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.2
    • /
    • pp.87-91
    • /
    • 2005
  • This paper presents a Monte-Carlo FDTD technique to determine the scattered field from a perfectly conducting surface like a sea surface, from which the useful information on the incoherent pattern tendency could be observed. A one-dimensional sea surface used to analysis scattering was generated using the Pierson-Moskowitz model. In order to verify the numerical results by this technique, these results are compared with those of the small perturbation method, which show a good match between them. To investigate the incoherent pattern tendency involved, the dependence of the back scattering coefficients on the different wind speed(U) is discussed for the back scattering case.

Turbofan and Pylon Flowfields Interaction in Turbofan Engines (터보팬엔진의 터보팬과 파일론 유동장 간섭에 관한 수치적 연구)

  • Joo, Won-Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.8
    • /
    • pp.1164-1172
    • /
    • 1998
  • The three dimensional numerical method using actuator disk blade row model is applied for calculating the flowfield interaction between an outlet guide vane (OGV) and a pylon in a typical civil turbofan engine. The static pressure distortion produced by the pylon is decaying upstream but is still felt at the turbofan exit, and hence can significantly affect the fan performance. The OGV amplifies the static pressure perturbation decaying upstream. The calculation results show that cyclic OGV which consists of three types of blades with different exit angles can reduce more than half of the asymmetries of total pressure and static pressure propagated through the OGV with uniform exit blade angle.

Structural Optimization Using Stochastic Finite Element Method (확률 유한요소법을 사용한 구조물 최적설계)

  • 임오강;이병우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.1920-1929
    • /
    • 1994
  • The stochastic finite element method(SFEM) based structural optimal design is presented. Random system response including uncertainties for the design variable is calculated with first order perturbation method. A method for calculating the sensitivity coefficients is developed using the equilibrium equation and first-order perturbed equation. Numerical results are presented for a truss, frame and plate structures with displacement and stress constraints. The sensitivity calculation proposed here is compared with finite difference method. A nonlinear programming technique is used to solve the problem. The procedure is easily incorporated with existing deterministic structural optimization.

Dynamic Stability Analysis of Axially Oscillating Cantilever Beams (축방향 왕복운동을 하는 외팔보의 동적 안정성 해석)

  • 현상학;유홍희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.322-327
    • /
    • 1996
  • Dynamic stability of an axially oscillating cantilever beam is investigated in this paper. The equations of motion are derived and transformed into non-dimensional ones. The equations include harmonically oscillating parameters which originate from the motion-induced stiffness variation. Using the equations, the multiple scale perturbation method is employed to obtain a stability diagram. The stability diagram shows that relatively large unstable regions exist around the frequencies of the first bending natural frequency, twice the first bending natural frequency, and twice the second bending natural frequency. The validity of the diagram is proved by direct numerical simulations of the dynamic system.

  • PDF

Design of MEMS Resonator Array for Minimization of Mode Localization Factor Subject to Random Fabrication Error (랜덤 제조 오차를 고려한 모드 편재계수를 최소화하는 반복 배열 마이크로 공진기의 최적설계)

  • Kim, Wook-Tae;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.840-845
    • /
    • 2005
  • This paper presents a robust optimal design method for a periodic structure type of MEMS resonator that is vulnerable to mode localization. The robust configuration of such a MEMS resonator to fabrication error is implemented by changing the regularity of periodic structure. For the mathematical convenience, the MEMS resonator is first modeled as a multi pendulum system. The index representing the measure of mode variation is then introduced using the perturbation method and the concept of modal assurance criterion. Finally, the optimal intentional mistuning, minimizing the expectation of the irregularity measure for each substructure, is determined for the normal distributed fabrication error and its robustness in the design of MEMS resonator to the fabrication error is demonstrated with numerical examples.

  • PDF

Design of MEMS Resonator Array for Minimization of Mode Localization Factor Subject to Random Fabrication Error (랜덤 제조 오차를 고려한 모드 편재계수를 최소화하는 반복 배열 마이크로 공진기의 최적설계)

  • Kim, Wook-Tae;Lee, Chong-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.8 s.101
    • /
    • pp.931-938
    • /
    • 2005
  • This paper presents a robust optimal design method for a periodic structure type of MEMS resonator that is vulnerable to mode localization. The robust configuration of such a MEMS resonator to fabrication error is implemented by changing the regularity of periodic structure For the mathematical convenience, the MEMS resonator is first modeled as a multi-pendulum system. The index representing the measure of mode variation is then introduced using the perturbation method and the concept of modal assurance criterion. Finally, the optimal intentional mistuning, minimizing the expectation of the irregularity measure for each substructure, is determined for the normal distributed fabrication error and its robustness in the design of MEMS resonator to the fabrication error is demonstrated with numerical examples.

EFFICIENT PARAMETERS OF DECOUPLED DUAL SINGULAR FUNCTION METHOD

  • Kim, Seok-Chan;Pyo, Jae-Hong
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.4
    • /
    • pp.281-292
    • /
    • 2009
  • The solution of the interface problem or Poisson problem with concave corner has singular perturbation at the interface corners or singular corners. The decoupled dual singular function method (DDSFM) which exploits the singular representations of the solutions was suggested in [3, 9] and estimated optimal accuracy in [10]. The convergence rates consist with theoretical results even for the problems with very strong singularity, with the efficiency depending on parameters used in the methods. Furthermore the errors in $L^2$ and $L^\infty$-spaces display some oscillation, in the cases with meshsize not small enough. In this paper, we present an answer to remove the oscillation via numerical experiments. We observe the effects of parameters in DDSFM, and show the consisting efficiency of the method over the strong singularity.

  • PDF