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ABSTRACT. The solution of the interface problem or Poisson problem with concave corner
has singular perturbation at the interface corners or singular corners. The decoupled dual sin-
gular function method (DDSFM) which exploits the singular representations of the solutions
was suggested in [3, 9] and estimated optimal accuracy in [10]. The convergence rates consist
with theoretical results even for the problems with very strong singularity, with the efficiency
depending on parameters used in the methods. Furthermore the errors in L2 and L∞-spaces dis-
play some oscillation, in the cases with meshsize not small enough. In this paper, we present an
answer to remove the oscillation via numerical experiments. We observe the effects of param-
eters in DDSFM, and show the consisting efficiency of the method over the strong singularity.

1. INTRODUCTION

Let Ω be an open, bounded polygonal domain inR2. Consider the following model Laplace
problem (called interface problem){ −∇ · (a∇u) = f in Ω,

u = 0 on Γ := ∂Ω,
(1.1)

where the diffusion coefficient a(x) is a given piecewise constant function on subdomains Ωj ,
which are also assumed to be polygonal, and f is a given function in L2(Ω). This interface
problem is simply reduced to the Poisson problem if a(x) is constant on Ω. For the interface
problems and the Poisson problems on non-convex domains, the precise singular function rep-
resentations for solutions are well-known (see [1, 6, 7, 8, 11, 13, 14]). In [3, 5] the authors
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derived a new extraction formula for the stress intensity factor in term of integration of the
regular part of the solution, and used it together with the singular representation, to pose a
variational problem for the regular part of the solution. The optimal regularity of the regular
part gives the h1-error and h2-error in computational results, in H1- seminorm and L2-norm,
respectively, although the optimal theoretical error analysis in L2-norm is obtained recently
in [10]. This approach for the interface problem is considered in [9], where two examples
of interface problems were given with numerical computations. Although the results shows
the method works with high accuracy, it shows a little oscillating convergence rate. We recall
that we have used a cut-off function using a polynomial degree 5 to give the singular function
representations which plays an important role in the method.

In this paper we find that the method works well without oscillating in convergence rate if
we use polynomials with degree 7 and study the effects of the choice of parameters ρ and R
in the definition of the cut-off function. We also give several examples of interface problems
with singular points, in the interior or on the boundary, to show the method works with a stable
results for a series of examples with dramatically increasing singularities.

Here we note that the adaptive mesh refinement has strong points for the treatment of the
singular problem without knowledge of the singularities. One of the issue is to find a posteriori
error estimates which is robust. But for some special configurations of diffusion coefficients
it has been shown that there are no robust interpolation operators, for example checkerboard
distribution of coefficients [15, 16].

The first example of this paper is about interface problems with checkerboard distribution
of coefficients, having a strong singularity. Although we do not have the theoretical proof yet,
the computational results indicate that the method is an accurate numerical solver with scale of
the errors being independent of the jumps of the diffusion coefficients,

We will use the standard notation and definitions for the Sobolev spaces Ht(Ω) for t ≥ 0;
the standard associated inner products are denoted by (·, ·)t,Ω, and their respective norms and
seminorms are denoted by ‖·‖t,Ω and |·|t,Ω. The space L2(Ω) is interpreted as H0(Ω), in which
case the inner product and norm will be denoted by (·, ·)Ω and ‖ · ‖Ω, respectively, although we
will omit Ω if there is no chance of misunderstanding. H1

0 (Ω) = {u ∈ H1(Ω) : u = 0 on Γ}.

2. REVIEW OF ALGORITHM AND ERROR ANALYSIS

The cut-off function plays an important role in isolating the singular behavior of the problem.
We start this section with the definition of cut-off functions, which involves two parameters to
be analyzed in the next section. For this end, set

B(r1; r2) = {(r, θ) : r1 < r < r2 and 0 < θ < ω} ∩ Ω and B(r1) = B(0; r1).

2.1. Cut-off functions. We define two families of cut-off functions of r as follows :

η5,ρ(r) =





1 in B(1
2ρR),

15
16

{
8
15 − p(r) + 2

3p(r)3 − 1
5p(r)5

}
in B̄(1

2ρR; ρR),

0 in Ω \ B̄(ρR),

(2.1)
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and

η7,ρ(r) =





1 in B(1
2ρR),

1
32

{
16− 35p(r) + 35p(r)3 − 21p(r)5 + 5p(r)7

}
in B̄(1

2ρR; ρR),

0 in Ω \ B̄(ρR),

(2.2)

where p(r) = 4r
ρR − 3. Here, ρ is a parameter in (0, 2] and R ∈ R is a fixed number which will

be determined so that the singular part η2s has the same boundary condition as the solution u
of the model problems.

Note η5,ρ(r) and η7,ρ(r) are C2 and C3, respectively. We will use the same notation, η or ηρ,
etc., for these cut-off functions from now on until section 4, where the computational results of
several examples using these two different choices of cut-off functions are compared.
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(a) corner singular point : P1 (b) interior interface singular point : P2

(c) boundary interface singular point : P3, P4, P5

FIGURE 1. Examples of singular points: corner, interior interface, and bound-
ary interface singularities

2.2. Singularities and variational problem. First we need to identify the singular points of
the problem and singular functions. As depicted in Figure 1, there are three types of singular
points; corner singularities for the Poisson problem on the polygonal or corner with constant
diffusion coefficient (see (a)), the interior and boundary singularities for the interface problem
(see (b) and (c)).

The precise form of the singular function and dual singular function can be found in many
literature. For the corner singularity of Poisson problem we refer [3, 4], for example. In the
case of the interface problem we need to solve a Sturm-Liouville problem to get singularities
and the corresponding eigenfunctions, then the singular functions and dual singular functions
as in [9].
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Moreover we assume there is only one singular point, since the complexity caused by the
multiple singular points can be easily treated by the help of Sherman-Morrison formula.

• Singular function representation
Using a cut-off function above, the solution of (1.1) has the following singular function repre-
sentation

u = w +
L∑

l=1

κlηρsl, (2.3)

with w ∈ H2(Ωj), 1 ≤ j ≤ L, where the subdomain Ωj of Ω is a polygonal subset of Ω
and the diffusion coefficient is constant there, and κl is the so-called stress intensity factors for
1 ≤ l ≤ L. Note we call w the regular part of the solution and it depends on the choice of ρ in
(2.3) but the method works well for any 0 < ρ ≤ 1. Therefore, we may assume ρ = 1 so that
w is fixed for the simplicity. The complexity of linear system due to the multiplicity of singular
points and/or singular functions can be efficiently treated by Sherman-Morrison formula.

• Extraction formula and variational problem

Lemma 2.1. The stress intensity factors κl for 1 ≤ l ≤ L for the interface problem can be
expressed in terms of w by the following extraction formula

κl =
1

2αl
[(f, η2s−l) + (aw, ∆(η2s−l))]. (2.4)

Now we derives a variational problem for the regular part of the solution, whose well-
posedness is proved in [9, 3]. The singular function representation (2.3) of u and Lemma 2.1
yield the variational problem for the regular part of the solution; to find w ∈ H1

0 (Ω) such that

a(w, v) = g(v) ∀ v ∈ H1
0 (Ω), (2.5)

where the bilinear and linear forms are defined by

a(w, v) = (a∇w,∇v)−
L∑

l=1

1
2αl

(aw , ∆(η2s−l))(a∆(ηρsl), v) (2.6)

and

g(v) = (f, v) +
L∑

l=1

1
2αl

(f, η2s−l)(a∆(ηρsl), v), (2.7)

respectively.
Here we note that sl ∈ H1+αl−ε(Ωmi) and s−l ∈ H1−αl−ε(Ωmi) for any ε > 0. Moreover

we see the integrals in both (2.6) and (2.7) are well-defined since the cutoff functions η2 and
ηρ are 1 around the vertex p and ∆(η2s−l) = ∆(s−l) = 0 and ∆(ηρsl) = ∆(sl) = 0 there.

We refer [3, 9] for the existence and uniqueness of the solution w of the problem (2.5). Once
the solution is obtained, the stress intensity factors κl and the solution u of (1.1) are obtained
by (2.4) and (2.3).
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2.3. Summary of the algorithm and error analysis. In this subsection we list the error anal-
ysis of the method in the standard norms, ‖ ·‖1 and ‖ ·‖, carried out with a regular triangulation
and continuous piecewise linear finite element space Vh(see [3, 9, 10]).

The finite element approximation to w is to seek wh ∈ Vh such that

a(wh, v) = g(v) ∀ v ∈ Vh, (2.8)

with error bounds

‖w − wh‖1 ≤ C h‖f‖ and ‖w − wh‖ ≤ C h2‖f‖. (2.9)

Now approximations κl,h and uh to the stress intensity factors κl and the solution u of (1.1)
can be computed according to (2.4) and (2.3) as follows

κl,h =
1

2αl
(awh, ∆(η2s−l))B(R;2R) +

1
2αl

(f, η2s−l)B(2R) (2.10)

and
uh = wh +

∑

l

κl,hηρsl, (2.11)

respectively, with error bounds

|κl − κl,h| ≤ C h2‖f‖, ‖u− uh‖1 ≤ Ch‖f‖ and ‖u− uh‖ ≤ C h2‖f‖. (2.12)

Finally we summarize the procedure we get the approximation uh from with solution wh and
κl,h, which we might call Decoupled Dual Singular Function Methods (DDSFM) as follows;

Algorithm 1: (Decoupled Dual Singular Function Methods )
• Find the finite element approximation wh ∈ Vh such that

a(wh, v) = g(v) ∀ v ∈ Vh. (2.13)

• Compute κl,h using (2.10) for 1 ≤ l ≤ L.
• Then we have the solution uh by (2.11).

3. PARAMETERS ρ AND R IN THE ALGORITHM

In this section we examine the effects of two parameters ρ and R in the cut-off functions
to the convergence of the Algorithm. If we consider the usual variational form, the speed of
convergence is roughly in inverse proportion to the ratio of two constants appearing in the
continuity and coercivity inequalities for the bilinear form due to the Céa’s Theorem. Note
the variational problem (2.5) does not satisfy the usual coercivity and may not use the Céa’s
Theorem.

Nevertheless we observe that only the second terms in the bilinear form (2.6) contain the
parameters ρ and R. So we compute the norms of Laplacians of the singular and dual sin-
gular function multiplied by the cut-off functions delicately, then see the dependence of the
continuity constant to the parameters ρ and R in the algorithm.
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Lemma 3.1.

∆(ηρsl) = (∂rrηρ +
1
r
(1 +

2π

ω
)∂rηρ)sl := p1(r)rαlΘl(θ) (3.1)

on B(ρR
2 ; ρR) and

∆(η2s−l) = (∂rrη2 +
1
r
(1− 2π

ω
)∂rη2)s−l := p2(r)r−αlΘl(θ), (3.2)

on B(R; 2R) where pi are functions of r, only dependent on the cut-off functions.

Proof. Use the facts ∆sl = 0 and that

∆(ηρsl) = ∆(ηρ)sl + 2∇ηρ · ∇sl = (∂rrηρ +
1
r
∂rηρ)sl + 2ηρ(cos θ, sin θ)T · ∇sl.

A similar method can be applied for the dual function s−l.

Lemma 3.2. For any 0 < ρ ≤ 1, we have that

‖a 1
2 ∆(η2s−l)‖B(R;2R) ≤ C4 R−αl−1 (3.3)

and

‖a 1
2 ∆(ηρsl)‖B( ρR

2
;ρR)

≤ C6(ρR)αl−1. (3.4)

For the observation for the effect of parameters on the coefficient in the error analysis we
have the following lemma;

Lemma 3.3. For 0 < ρ ≤ 1, there exist positive constants Cl such that

|(aφ,∆(η2s−l))(a∆(ηρsl), ψ)| ≤ C4C6ρ
αl−1

R2
‖a 1

2 φ‖ ‖a 1
2 ψ‖. (3.5)

Proof. The lemma is immediate by the Lemma 3.2.

Now we have the following observations regarding the effects of the parameters R and ρ to
the algorithm;

O1:: The coefficient on the right hand side of (3.5) has negative powers −2 and αl − 1
on R and ρ, respectively.

O2:: Since 0 < αl < 1, we need to choose the parameter ρ = 1 for a smaller continuity
coefficient.

O3:: The bigger the number R, the less the coefficient on the right hand-side in Lemma 3.3.
So, we need to choose bigger R such that B(0; 2R) ⊂ Ω does not contain any other
singular points or corner points.
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4. NUMERICAL EXPERIMENTS

The purpose of this section is to present various numerical tests, which complete the purpose
of the paper. Since we present numerical results for singularity at a corner in [9], we carry out
numerical test on a square domain Ω = (−1, 1)2 in Figure 2 with interior singularity at origin.

The purposes of Example 1 are to assert that

P1:: the method works independently to the jump of the diffusion of the interface prob-
lem.

P2:: It works well even for the interface problem with strong singular solution in Hα

(α ≈ 1.0550927).

The purposes of Example 2 are to assert that

P3:: We can remove the oscillation in the rate of convergence error by using the polyno-
mial degree 7 instead of degree 5 in the cut-off function.

P4:: We can reduce the error by using bigger R rather than smaller one.

Here, we use the following notations for the H1-seminorm and relative H1-seminorm;

|||E|||H1 = ‖∇(u− uh)‖ and |||E|||R =

∥∥∥a
1
2∇(u− uh)

∥∥∥
∥∥∥a

1
2∇u

∥∥∥
.

(−1, −1) (1, −1)

(−1, 1) (1, 1)
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FIGURE 2. A square partitioned into four squares.

Our first example is an interface problem with an interior singular point. The results show
that our methods is independent of the jump of the diffusion coefficients.
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4.1. Example 1 : Comparison numerical results for the variation of diffusion coefficients.
We consider the interface problem with an interior singular interface point at the origin;

{ −∇ · (a∇u) = f in Ω,

u = 0 on ∂Ω,
(4.1)

where Ω = (−1, 1)2 with four square subdomains as in Figure 2. The diffusion coefficients ai

in each subdomain Ωi are defined as follows;
Case 1: a1 = a3 = 1, a2 = 25, and a4 = 50.
Case 2: a1 = a3 = 1, a2 = 100, and a4 = 200.
Case 3: a1 = a3 = 1, a2 = 400, and a4 = 800.

Note the coefficients a2 and a4, on Ω2 and Ω4, are chosen to jump 4 times, respectively. For
each case we can compute the positive eigenvalues λ and the corresponding eigenfunctions of
the Sturm-Liouville problem, then determine the singular functions s. The following are the
square roots

√
λ of the computed positive eigenvalues which determine the singularities(power

to r) for each case;
Case 1: α ≈ 0.21801835634053335,
Case 2: α ≈ 0.1099460764271882,
Case 3: α ≈ 0.05509274836764086.

We note that the more the coefficients jump, the smaller the power is and the singularity of the
solution increases. Now we introduce the forcing term f in the problem (4.1);

f = −ai

(
− 6

ai
x(y2 − y4) +

1
ai

(x− x3)(2− 12y2) + ∆(η2s)
)

on Ωi,

so that the exact solution has the singular decomposition;

u = wρ + ηρs,

where ηρ is the cut-off function with R = 1/2 and ρ = 1 in (2.1). Thus, w := wρ is the regular
part of the solution having the form of

w =
1
ai

(x− x3)(y2 − y4) + (η2 − ηρ)s on Ωi, i = 1, 2, 3, 4.

The computational results for three cases are given in Table 1, 2, and 3 and there are only
small difference among the results. So we can conclude that DDSFM works robustly for very
big jump coefficients with strong singularities. We remark that the oscillation of errors in
L2(Ω) and L∞(Ω)-spaces due to insufficient of regularity of cut off function (2.1). We will
compare numerical behaviors between cut off functions (2.1) and (2.2) in §4.2.

4.2. Example 2 : Two choices of the parameter R and the polynomial with degree 5 and
7 in the cut-off function. The domain and subdomains are the same as in Example 1 and
a1 = a3 = R0 and a2 = a4 = 1, where R0 can be chosen later so that we have particular
singularity α = 0.1 (see [2, 12]). In fact, R0 ≈ 161.4476387975881.
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h 1/16 1/32 1/64 1/128 1/256 1/512

‖E‖L2
0.121169 0.00641669 0.00703718 0.000803131 0.000337706 6.96411e-05

Order 4.239048 -0.133168 3.131290 1.249868 2.277757

‖E‖L∞
0.312583 0.016195 0.0183967 0.00223744 0.000905891 0.00018592

Order 4.270619 -0.183899 3.039526 1.304440 2.284656

|||E|||H1
1.23423 0.45426 0.231951 0.113141 0.0565359 0.0282413
Order 1.442021 0.969698 1.035698 1.000883 1.001361

|||E|||R 0.117836 0.0291697 0.0153021 0.00705695 0.00351798 0.00175353
Order 2.014238 0.930741 1.116613 1.004298 1.004485

κh
1.1937 1.01893 1.01121 1.00177 1.00059 1.00013
Order 3.355078 0.755888 2.662965 1.584962 2.182203

TABLE 1. Error decay for case 1 of §4.1

h 1/16 1/32 1/64 1/128 1/256 1/512

‖E‖L2
0.189589 0.00979614 0.0117825 0.00144784 0.000619979 0.000133304

Order 4.274518 -0.266360 3.024672 1.223611 2.217499

‖E‖L∞
0.515027 0.0263781 0.0314316 0.00398715 0.00165554 0.00035362

Order 4.287235 -0.252875 2.978786 1.268056 2.227030

|||E|||H1
1.80414 0.501356 0.266292 0.124206 0.0619946 0.0308978
Order 1.847404 0.912826 1.100274 1.002520 1.004638

|||E|||R 0.188638 0.0308873 0.0180715 0.00728764 0.00361533 0.00178846
Order 2.610535 0.773297 1.310193 1.011324 1.015410

κh
1.31658 1.02625 1.0187 1.00281 1.001 1.00022
Order 3.592181 0.489279 2.734396 1.490570 2.184425

TABLE 2. Error decay for case 2 of §4.1

The exact solution of the interface problem with a vanishing right-hand side f can be found
in [2] or computed by using the formulas derived by R. B. Kellogg([8]). To use our approach,
we split the exact solution u to u = w + ληρs, where ηρ is the same cut-off function as in
Example 1. So, we have α = 0.1 and can check the singular function s = rα(Ci cos(αθ) +
Di sin(αθ)) have the coefficients Ci, Di on each subdomains Ωi (See Figure 2) as follows;

C1 = 1.0, D1 = 0.07870170682462,
C2 = 2.97537668119027, D2 = −12.39333580609424,
C3 = −0.92673635140003, D3 = −0.38386676549405,
C4 = −6.65950276215729, D4 = 10.86732081786520.

(4.2)

We first remark that the convergence rates are independent on R, but the errors for the bigger
R = 1/2 in Tables 4 and 6 are much smaller than those for the small R = 1/8 in Tables 5
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h 1/16 1/32 1/64 1/128 1/256 1/512

‖E‖L2
0.248176 0.0128642 0.0158906 0.00204376 0.000888561 0.000197039

Order 4.269930 -0.304812 2.958876 1.201683 2.172990

‖E‖L∞
0.685167 0.0343631 0.0425568 0.00554794 0.00235945 0.000518869

Order 4.317524 -0.308530 2.939366 1.233501 2.185008

|||E|||H1
2.34664 0.529674 0.294471 0.130531 0.0650709 0.0323253
Order 2.147420 0.846979 1.173733 1.004308 1.009349

|||E|||R 0.255358 0.0325948 0.0212676 0.00750582 0.00370203 0.00181015
Order 2.969808 0.615985 1.502576 1.019693 1.032207

κh
1.42513 1.03203 1.02544 1.00376 1.00141 1.00032
Order 3.730408 0.332325 2.758294 1.415037 2.139551

TABLE 3. Error decay for case 3 of §4.1

h 1/16 1/32 1/64 1/128 1/256 1/512

‖E‖L2
0.00212664 0.000302188 0.000111722 1.8242e-05 5.05712e-06 1.13813e-06

Order 2.815057 1.435533 2.614577 1.850876 2.151651

‖E‖L∞
0.00414278 0.00119037 0.000226678 3.70706e-05 1.04631e-05 2.17368e-06

Order 1.799189 2.392694 2.612297 1.824965 2.267099

|||E|||H1
0.0463328 0.0216787 0.0107002 0.00532138 0.00266172 0.0013307

Order 1.095756 1.018640 1.007765 0.999442 1.000173

|||E|||R 0.0388715 0.0159448 0.00766791 0.00376714 0.001879 0.000938677
Order 1.285627 1.056181 1.025364 1.003505 1.001264

TABLE 4. Error decay with R = 1/2 and cut-off function η = η5,1 in §4.2

h 1/16 1/32 1/64 1/128 1/256 1/512

‖E‖L2
0.0257975 0.0027329 0.00138712 0.000150095 7.75654e-05 4.84607e-06

Order 3.238727 0.978340 3.208145 0.952391 4.000526

‖E‖L∞
0.0578551 0.0111715 0.00484416 0.000779646 0.000270837 3.98846e-05

Order 2.372621 1.205505 2.635355 1.525394 2.763521

|||E|||H1
0.396396 0.0815404 0.0466302 0.018517 0.00938305 0.00464047

Order 2.281356 0.806250 1.332414 0.980722 1.015786

|||E|||R 0.352453 0.0801992 0.0380502 0.0137496 0.00671486 0.00328066
Order 2.135771 1.075684 1.468514 1.033960 1.033371

TABLE 5. Error decay with R = 1/8 and cut-off function η = η5,1 in §4.2
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h 1/16 1/32 1/64 1/128 1/256 1/512

‖E‖L2
0.00115259 0.000315032 8.21328e-05 2.06608e-05 5.17576e-06 1.29526e-06

Order 1.871309 1.939468 1.991062 1.997053 1.998529

‖E‖L∞
0.00220923 0.000671963 0.000177266 4.42892e-05 1.11713e-05 2.79298e-06

Order 1.717090 1.922466 2.000889 1.987158 1.999920

|||E|||H1
0.0494193 0.0255158 0.0128035 0.00639884 0.00319865 0.00159922

Order 0.953684 0.994853 1.000656 1.000347 1.000095

|||E|||R 0.0402564 0.0191564 0.00924836 0.00456849 0.00227672 0.00113741
Order 1.071392 1.050557 1.017480 1.004761 1.001204

TABLE 6. Error decay with R = 1/2 and cut-off function η = η7,1 in §4.2

h 1/16 1/32 1/64 1/128 1/256 1/512

‖E‖L2
0.244612 0.00570191 0.000336002 8.84486e-05 1.81476e-05 4.50673e-06

Order 5.422906 4.084903 1.925559 2.285060 2.009626

‖E‖L∞
0.554409 0.0176703 0.00271292 0.000697018 0.000161296 3.91166e-05

Order 4.971552 2.703408 1.960579 2.111485 2.043858

|||E|||H1
1.92219 0.0928789 0.0446906 0.0223462 0.0111635 0.00557634
Order 4.371256 1.055379 0.999942 1.001240 1.001399

|||E|||R 2.13053 0.0848877 0.0365569 0.0167652 0.00805581 0.00397733
Order 4.649513 1.215412 1.124674 1.057368 1.018229

TABLE 7. Error decay with R = 1/8 and cut-off function η = η7,1 in §4.2

and 7. In addition, we can observe oscillation of convergence order in Tables 4 and 5 for the
case using η = η5,1 in (2.1). One answer to remove the oscillation is to compute on very fine
mesh, but it is not best answer. We observe this perturbation is due to insufficiency of regularity
of cut off function η and carry out same experiment with η = η7,1 in (2.2) and get a positive
answer to remove the perturbations in Tables 6 and 7 with η = η7,1.
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