• Title/Summary/Keyword: Numerical Integration Time Step

Search Result 83, Processing Time 0.024 seconds

Construction of the reduced system by two-level scheme and time integration in the reduced system under arbitrary loading (2단계 축소기법에 의한 축소시스템의 구성과 동하중에 의한 구조물의 동적 거동에 관한 연구)

  • Kim, Hyun-Gi;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.453-458
    • /
    • 2004
  • This study proposes a new two-level condensation scheme for the construction of a reduced system. In the first step, the candidate area is selected for the construction of the reduced system by energy estimation in element-level. In the second step, primary degrees of freedom are selected by sequential elimination from the candidate degrees of freedom linked to the selected elements. Numerical examples demonstrate that the proposed method saves the computational cost effectively and provides a reduced system which predicts the eigenvalues accurately. Moreover, the well-constructed reduced system can present the reliable behavior of the structure under arbitrary dynamic loads comparing to that of global system. Time integration in a reduced system can save the computing time remarkably. Through a few numerical examples, the efficiency and reliability of the proposed scheme are verified.

  • PDF

Accuracy Analysis of GLONASS Orbit Determination Strategies for GLONASS Positioning (GLONASS 측위를 위한 위성좌표 산출 정확도 향상 방안)

  • Lee, Ho-Seok;Park, Kwan-Dong;Kim, Hye-In
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.6
    • /
    • pp.573-578
    • /
    • 2010
  • Precise determination of satellite positions is necessary to improve positioning accuracy in GNSS. In this study, GLONASS orbits were predicted from broadcast ephemeris using the 4th-order Runge-Kutta numerical integration method and their accuracy dependence on the integration step and the integration time was analyzed. The 3D RMS (Root Mean Square) differences between the results from I-second integration step and 300-second integration step was about 3 cm, but the processing time was one hundred times less for the I-second integration time case. For trials of different integration times, the 3D RMS errors were 8.3 m, 187.3 m, and 661.5 m for 30-, 150-, and 300-minutes of integration time, respectively. Though this integration-time analysis, we concluded that the accuracy gets higher with a shorter integration time. Thus we suggest forward and backward integration methods to improve GLONASS positioning accuracy, and with this method we can achieve a 5-meter level of 3-D orbit accuracy.

Study on the Integration Stability and the Accuracy of Some Friction Models for the Dynamic Analysis Using Recurdyn (RecurDyn을 이용한 동적 해석 시 마찰모델에 따른 적분 안정성 및 정확성 연구)

  • Yoo, Hong-Hee;Lee, Jun-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.11
    • /
    • pp.1111-1117
    • /
    • 2008
  • During the dynamic analysis of a system, the Coulomb friction law is emploved to calculate the friction force. Since the static friction coefficient is only employed during the zero relative velocity, it is impractical to employ the coefficient during the dynamic analysis. To calculate the static friction force, therefore, some friction models have been developed. In this study, the integration stability and the accuracy of the models are investigated with some numerical examples. The effect of time step size during the numerical integration is also investigated. The numerical study shows that the friction model employed for most commercial codes is not as good as the one proposed in this study.

A virtual parameter to improve stability properties for an integration method

  • Chang, Shuenn-Yih
    • Earthquakes and Structures
    • /
    • v.11 no.2
    • /
    • pp.297-313
    • /
    • 2016
  • A virtual parameter is introduced into the formulation of the previously published integration method to improve its stability properties. It seems that the numerical properties of this integration method are almost unaffected by this parameter except for the stability property. As a result, it can have second order accuracy, explicit formulation and controllable numerical dissipation in addition to the enhanced stability property. In fact, it can have unconditional stability for the system with the instantaneous degree of nonlinearity less than or equal to the specified value of the virtual parameter for the modes of interest for each time step.

On a new fourth order self-adaptive time integration algorithm

  • Zhong, Wanxie;Zhu, Jianping
    • Structural Engineering and Mechanics
    • /
    • v.4 no.6
    • /
    • pp.589-600
    • /
    • 1996
  • An explicit 4th order time integration scheme for solving the convection-diffusion equation is discussed in this paper. A system of ordinary differential equations are derived first by discretizing the spatial derivatives of the relevant PDE using the finite difference method. The integration of the ODEs is then carried out using a 4th order scheme and a self-adaptive technique based on the spatial grid spacing. For a non-uniform spatial grid, different time step sizes are used for the integration of the ODEs defined at different spatial points, which improves the computational efficiency significantly. A numerical example is also discussed in the paper to demonstrate the implementation and effectiveness of the method.

A Comparison Study of Real-Time Solution to All- Attitude Angles of an Aircraft

  • Shin Sung-Sik;Lee Jung-Hoon;Yoon Sug-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.376-381
    • /
    • 2006
  • In this paper, the quaternion, the dual Euler, and the direction cosine methods are numerically compared using a non-aerodynamic 6 degree-of-freedom rigid model at all-attitude angles of an aircraft. The dual Euler method turns out to be superior to the others in the applications because it shows better numerical accuracy, stability, and robustness in integration step sizes. The dual Euler method is affordably less efficient than the quaternion method in terms of computational cost. Numerical accuracy and stability, which allow larger integration step sizes, are more critical in modern real-time applications than computational efficiency because of today's increased computational power. If the quaternion method is required because of constraints in computation time, then a suppression mechanism should be provided for algebraic constraint errors which will eventually add computational burden.

Time Integration in Reduced System Constructed by Two-level Condensation Scheme (임의의 하중 하에서 축소시스템 구성을 통한 구조물의 동적 거동 연구)

  • 김현기;조맹효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.19-26
    • /
    • 2004
  • This study constructs the reduced system by two-level condensation scheme. This scheme consists of two steps. First step selects the candidate area for the primary degrees of freedom by energy estimation in element level. In the second step, the primary degrees of freedom are selected by the sequential elimination scheme. The efficiency and reliability of this scheme is shown through the prediction of eigenvalues of a few numerical examples. Time integration in the reduced system can save the computing time effectively. The well-constructed reduced system can present the accurate behavior of the structure under arbitrary dynamic loads so much as the global system. Through the numerical example, the efficiency and reliability of the proposed scheme will be demonstrated.

  • PDF

A fourth order finite difference method applied to elastodynamics: Finite element and boundary element formulations

  • Souza, L.A.;Carrer, J.A.M.;Martins, C.J.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.6
    • /
    • pp.735-749
    • /
    • 2004
  • This work presents a direct integration scheme, based on a fourth order finite difference approach, for elastodynamics. The proposed scheme was chosen as an alternative for attenuating the errors due to the use of the central difference method, mainly when the time-step length approaches the critical time-step. In addition to eliminating the spurious numerical oscillations, the fourth order finite difference scheme keeps the advantages of the central difference method: reduced computer storage and no requirement of factorisation of the effective stiffness matrix in the step-by-step solution. A study concerning the stability of the fourth order finite difference scheme is presented. The Finite Element Method and the Boundary Element Method are employed to solve elastodynamic problems. In order to verify the accuracy of the proposed scheme, two examples are presented and discussed at the end of this work.

Nonlinear dynamic analysis by Dynamic Relaxation method

  • Rezaiee-Pajand, M.;Alamatian, J.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.5
    • /
    • pp.549-570
    • /
    • 2008
  • Numerical integration is an efficient approach for nonlinear dynamic analysis. In this paper, general category of the implicit integration errors will be discussed. In order to decrease the errors, Dynamic Relaxation method with modified time step (MFT) will be used. This procedure leads to an alternative algorithm which is very general and can be utilized with any implicit integration scheme. For numerical verification of the proposed technique, some single and multi degrees of freedom nonlinear dynamic systems will be analyzed. Moreover, results are compared with both exact and other available solutions. Suitable accuracy, high efficiency, simplicity, vector operations and automatic procedures are the main merits of the new algorithm in solving nonlinear dynamic problems.

Using integrated displacement method to time-history analysis of steel frames with nonlinear flexible connections

  • Hadianfard, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.5
    • /
    • pp.675-689
    • /
    • 2012
  • Most connections of steel structures exhibit flexible behaviour under cyclic loading. The flexible connections can be assumed as nonlinear rotational springs attached to the ends of each beam. The nonlinear behaviour of the connections can be considered by suitable moment-rotation relationship. Time-history analysis by direct integration method can be used as a powerful technique to determine the nonlinear dynamic response of the structure. In conventional numerical integration, the response is evaluated for a series of short time increments. The limitations on the size of time intervals can be removed by using Chen and Robinson improved time history analysis method, in which the integrated displacements are used as the new variables in integrated equation of motion. The proposed method permits longer time intervals and reduces the computational works. In this paper the nonlinearity behaviour of the structure is summarized on the connections, and the step by step improved time-history analysis is used to calculate the dynamic response of the structure. Several numerical calculations which indicate the applicability and advantages of the proposed methodology are presented. These calculations illustrate the importance of the effect of the nonlinear behaviour of the flexible connections in the calculation of the dynamic response of steel frames.