• 제목/요약/키워드: Numerical Dispersion

검색결과 588건 처리시간 0.027초

Two Sequential Wilcoxon Tests for Scale Alternatives

  • Mishra, Prafulla-Chandra
    • Journal of the Korean Statistical Society
    • /
    • 제30권4호
    • /
    • pp.679-691
    • /
    • 2001
  • Two truncated sequential tests are developed for the two-sample scale problem based on the usual Wilcoxon rank-sum statistic for two different dispersion indices - absolute median deviations, when the medians of the two populations X and Y are equal or known and sums of squared mean deviations, when the medians are either unknown or unequal. The first test is briefly called SWAMD test and the second SWSMD test. For the SWAMD test, the percentile points for both the one-sided and two-sided alternatives, (equation omitted) have been found by Wiener approximation and their values computed for a range of values of a and N; analytical expression for the power function has been derived through Wiener process and its performance studied for various sequential designs for exponential distribution. This test has been illustrated by a numerical example. All the results of the SWAMD test, being directly applicable to the SWSMD test, are not dealt with separately Both the tests are compared and their suitable applications indicated.

  • PDF

CFD를 이용한 단일 구획 공간에서의 연기와 CO 확산 시뮬레이션 (CFD-based simulation of fire-induced smoke and carbon monoxide transportation in the single compartment)

  • 손윤석;김형권;오형식;김태옥;신동일
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2008년도 춘계학술논문발표회 논문집
    • /
    • pp.290-293
    • /
    • 2008
  • In this study, the Computational Fluid Dynamics (CFD) has been used to analyze the smoke movement and the carbon monoxide concentration distribution, both vertically and longitudinally, in a compartment, based on conservation laws. The Fire Dynamics Simulator (FDS) developed by National Institute of Standards and Technology (NIST) was used for numerical simulations using Reynolds averaged Navier-Stokes equations (RANS) model to solve for time-averaged properties. Results show, as a function of time, a detailed distribution of temperature and carbon monoxide concentration changing against the height above the floor and those changes alongside the distance away from the fire source. Fire-induced smoke and toxic gases like CO are more dangerous in a confined space. The result of study may contribute in designing the smoke evacuation system based on the precise tenable condition.

  • PDF

OSKA형 연소실에서 충돌면크기변화가 디젤분무거동에 미치는 영향 (The Effect of Impinging Land Size on Diesel Spray Behavior in OSKA Type Combustion Chamber)

  • 임덕경;박권하
    • 한국자동차공학회논문집
    • /
    • 제9권4호
    • /
    • pp.18-26
    • /
    • 2001
  • OSKA engine was developed to remove the dense core of injection sprays. The engine uses impinging spray on a small pip, which spray after impinging is broken into smaller drops and disperses into fee space in chamber. In this paper the pip size is analyzed to give more dispersion of spray and fuel vapor. The gas phase is modelled by the Eulerian continuum conservation equations of mass, momentum, energy and fuel vapour fraction. The liquid phase is modelled following the discrete droplet model approach in Lagrangian form, and the droplet wall interaction is modelled as a function of the velocity normal to impaction lands. The droplet distributions, vapor fractions and gas flows are analyzed for various injection pressure cases. Numerical results indicate that the land diameter of 5.6mm has the best performance of spray dynamics and vaporization in the test sizes.

  • PDF

Dynamic analysis of gradient elastic flexural beams

  • Papargyri-Beskou, S.;Polyzos, D.;Beskos, D.E.
    • Structural Engineering and Mechanics
    • /
    • 제15권6호
    • /
    • pp.705-716
    • /
    • 2003
  • Gradient elastic flexural beams are dynamically analysed by analytic means. The governing equation of flexural beam motion is obtained by combining the Bernoulli-Euler beam theory and the simple gradient elasticity theory due to Aifantis. All possible boundary conditions (classical and non-classical or gradient type) are obtained with the aid of a variational statement. A wave propagation analysis reveals the existence of wave dispersion in gradient elastic beams. Free vibrations of gradient elastic beams are analysed and natural frequencies and modal shapes are obtained. Forced vibrations of these beams are also analysed with the aid of the Laplace transform with respect to time and their response to loads with any time variation is obtained. Numerical examples are presented for both free and forced vibrations of a simply supported and a cantilever beam, respectively, in order to assess the gradient effect on the natural frequencies, modal shapes and beam response.

Numerical Simulation and Forecasting of Mechanical Properties for Multi-Component Nonferrous Dispersion-hardened Powder Materials

  • Ryabicheva, Lyudmila;Usatyuk, Dmytro
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.998-999
    • /
    • 2006
  • A new mathematical simulation technique for physico-mechanical properties of multi-component powder materials is proposed in this paper. The main advantage of the technique is that finite elements representing different components are placed into a common mesh and may exchange their properties. The output data are properties of material after sintering. The technique allows us to investigate the influence of each component of a material on the properties and distribution of properties inside the sample. The comparative analysis of materials with different compositions is based on simulation results that are well concordant with the results of the laboratory experiments.

  • PDF

Eulerian-Lagrangian 방법에서 입자 및 유동 격자계 분리를 통한 2상 유동의 효율적 계산 (Efficient Computation of Two-Phase Flow by Eulerian-Lagrangian Method Using Separate grids for the Particles and Flow Field)

  • 박순일;이진규;장근식
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 추계 학술대회논문집
    • /
    • pp.43-48
    • /
    • 2003
  • When the Eulerian-Lagrangian method is used to analyze the particle laden two-phase flow, a large number of particles should be used to obtain statistically meaningful solutions. Then it takes too much time to track the particles and to average the particle properties in the numerical analysis of two-phase flow. The purpose of this paper is to reduce the computation time by means of a set of particle gird separate to the flow grid. Particle motion equation here is the simplified B-B-O equation, which is integrated to get the particle trajectories. Particle turbulent dispersion, wall collision, and wall roughness effects are considered but the two-way coupling effects between gas and particles are neglected. Particle laden 2-D channel flow is solved and it is shown that the computational efficiency is indeed improved by using the current method

  • PDF

등방성 난류에서 입자의 회전에 의한 분산 특성의 변화 (On the modification of particle dispersion in isotropic turbulence by free rotation of particle)

  • 박용남;이창훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2554-2557
    • /
    • 2008
  • Effect of a particle's spin is investigated numerically by considering the effect of lift occurring due to difference of rotations of a particle and of fluid such as the Saffman lift and Magnus force. These lift forces have been neglected in many previous works on particle-laden turbulence. The trajectory of particles can be changed by the lift forces, resulting in significant modification of the stochastic characteristics of heavy particles. Probability density functions and autocorrelations are examined of velocity, acceleration of solid particle and acceleration of fluid at the position of solid particle. Changes in velocity statistics are negligible but statistics related with acceleration are a little bit changed by particle's rotation. When a laden particle encounters with coherent structures during the motion, the particle's rotation might significantly affects the motion due to intermittently large fluid acceleration near coherent structures.

  • PDF

응력파동해석에 대한 전산역학적 접근방법 (Approaches of the Computaional Mechanics on the Stress Wave Analysis)

  • 조윤호;정현규;김승호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.415-429
    • /
    • 2002
  • Various modeling techniques for ultrasonic wave propagation and scattering problems in finite solid media are presented. Elastodynamic boundary value problems in inhomogeneous multi-layered plate-like structures are set up for modal analysis of guided wave propagation and numerically solved to obtain dispersion curves which show propagation characteristics of guided waves. As a powerful modeling tool to overcome such numerical difficulties in wave scattering problems as the geometrical complexity and mode conversion, the Boundary Element Method(BEM) is introduced and is combined with the normal mode expansion technique to develop the hybrid BEM, an efficient technique for modeling multi-mode conversion of guided wave scattering problems.

  • PDF

주기적 왕복유동에 의한 축열매체의 열회수 특성에 관한 연구 (A Study on Heat Recovery Characteristics of Porous Media According to Periodic Oscillating Flows)

  • 한화택;신민우
    • 설비공학논문집
    • /
    • 제19권2호
    • /
    • pp.175-182
    • /
    • 2007
  • The objective of the present study is to investigate the heat storage characteristics of a packed bed according to periodically oscillating flows. Experiments have been performed to measure transient temperature distributions in solid and fluid Phases of the porous media. A simplified analytical model has been developed with intra-particle and dispersion effects neglected, and non-dimensional parameters have been derived. The transient temperature distributions according to the simplified numerical model agree well with the experimental results. Heat storage efficiencies defined in two different ways are obtained for various time periods and face velocities.

동수압 및 분산 효과를 고려한 댐붕괴파와 범람 수치모의 (Numerical Simulations of Dam-Break Flows and Inundation considering Nonhydrostatic Pressure and Dispersive Effects)

  • 김대홍;패트릭 라이��
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.213-217
    • /
    • 2010
  • 댐붕괴파 (dam-break flow)나 지진해일에 의해 발생하는 undular bore와 충격파 (shock) 현상을 동수압 및 분산효과를 고려하여 수치모의를 수행하였다. 완전비선형 Boussinesq-type equations 모형을 이용하여, 동수압 및 분산 효과를 고려하였다. 방정식은 4차 정확도의 유한체적법을 이용하여 해석하였고, 시간적으로도 4차정확도의 기법을 이용하여 고차미분항에 대한 수치분산을 억제하였다. 다양한 경우의 1차원과 2차원 공간에서의 수치모의를 수행하고 검증을 수행하였다. 그 결과, 완전비선형 Boussinesq-type equations 모형은 천수방정식 (shallow water equations) 기반의 모형에서 재현이 불가능한 undular bore 등을 재현 하는 등, 전반적으로 천수방정식 기반의 모형 보다 물리적으로도 타당하고 정량적으로도 실험결과와 잘 일치하는 경향을 보였다. 즉, 댐붕괴파나 지진해일 등에 의한 범람 모의에 있어 동수압과 분산 효과의 중요성이 공학적으로도 매우 중요한 고려사항 임이 나타났다.

  • PDF