The field of handwriting recognition has been researched for many years. A hybrid classifier has been proven to be able to increase the recognition rate compared with a single classifier. In this paper, we combine support vector machine (SVM) and hidden Markov model (HMM) for offline handwritten numeral recognition. To improve the performance, we extract features adapted for each classifier and propose the modified SVM decision structure. The experimental results show that the proposed method can achieve improved recognition rate for handwritten numeral recognition.
In this paper, we studied the use of the foreground and background features and SVM classifier to improve the accuracy of offline handwritten numeral recognition. The foreground features are two directional features: directional gradient feature by Kirsch operators and directional stroke feature by local shrinking and expanding operations, and the background feature is concavity feature which is extracted from the convex hull of the numeral, where the concavity feature functions as complement to the directional features. During classification of the numeral, these three features are combined to obtain good discrimination power. The efficiency of our scheme is tested by recognition experiments on the handwritten numeral database CENPARMI, where SVM classifier with RBF kernel is used. The experimental results show the usefulness of our scheme and recognition rate of 99.10% is achieved.
본 논문에서는 고유벡터를 이용한 오프라인 필기체 숫자인식 기법을 제시한다. 본 기법에서는 KL 변환에 의한 고유벡터를 이용하여 통계적으로 숫자의 특징을 추출하며, 특징공간상에서 최소거리기법으로 숫자를 인식한다. 본 기법에서 제안된 특징추출 방법에서는 많은 표본 숫자영상에서 각 숫자들의 특징을 가장 잘 표현하는 기저벡터를 찾아내고 이로부터 숫자의 특징을 구한다. 제시된 기법의 성능 평가를 위해 Concordia대학의 무제약 필기체 숫자 데이터베이스를 사용하여 실험한 결과 96.2%의 인식률을 얻을 수 있었다.
본 연구에서는 KL변환에 의한 고유벡터를 구하고, 이를 이용한 오프라인 필기체 숫자인식 기법을 제시하고자 한다. 본 기법에서는 KL 변환에 의한 고유벡터를 이용하여 통계적으로 숫자의 특징을 추출하며, 특징 공간상에서 최소거리 기법으로 숫자를 인식한다. 본 기법에서 제안된 특징추출 방법에서는 많은 표본 숫자영상에서 각 숫자들의 특징을 가장 잘 표현하는 기저벡터를 찾아내고 이로부터 필기체숫자의 특징을 구한다. 제안된 기법의 성능 평가를 위해 캐나다 Concordia 대학의 무제약 필기체 숫자 데이터베이스를 사용하였으며, 실험한 결과 인식률은 96.2%이었다.
In this paper, we propose a novel feature for recognizing handwritten Odia numerals. By using polygonal approximation, each numeral is segmented into segments of equal pixel counts where the centroid of the character is kept as the origin. Three primitive contour features namely, distance (l), angle (${\theta}$), and arc-tochord ratio (r), are extracted from these segments. These features are used in a neural classifier so that the numerals are recognized. Other existing features are also considered for being recognized in the neural classifier, in order to perform a comparative analysis. We carried out a simulation on a large data set and conducted a comparative analysis with other features with respect to recognition accuracy and time requirements. Furthermore, we also applied the feature to the numeral recognition of two other languages-Bangla and English. In general, we observed that our proposed contour features outperform other schemes.
본 논문에서는 숫자의 전경특징과 배경특징을 이용하고 SVM 분류기를 사용하여 오프라인 필기체 숫자인식에서 인식률을 향상시키는 방안을 제시한다. 숫자의 전경특징은 숫자의 에지선을 추출한 Kirsch 방향특징과 숫자선 자체를 추출한 projection 방향특징으로 구성되며, 숫자의 배경특징은 숫자의 볼록외피로 부터 추출되는 오목특징이다. 여기서 오목특징은 방향특징에 대해 보완적인 특징으로 작용하여 분류 성능 향상에 기여한다. 인식기로는 RBF 커널을 이용한 SVM 분류기를 사용하고, CENPAMI 숫자특징 데이터베이스를 사용하여 제시된 방법의 성능을 검사하였다. 실험 결과 각기 다른 분류 성능을 갖는 이들 3종의 특징들이 상호 보완적으로 작용하여 인식률 향상에 기여함을 확인할 수 있었으며, 제시된 복합특징에 의해 98.90%의 인식률을 달성하였다.
부분공간 인식기는 Karhunen-Loeve (KL) 변환을 기반으로 하는 대표적인 패턴인식 방법이다. 이 부분 공간 인식기는 고차원의 패턴을 저차원의 부분공간에 나타내어 인식을 한다. 그러나 차원 감축으로 인한 정보의 손실로 principal components가 유사하게 나타나는 패턴간에는 분별이 어려워지는 단점이 있다. 본 논문에서는 이러한 부분공간 인식기의 단점을 해결하기 위해 일반적으로 무시되는 minor components로 표현되는 패턴의 노벨티 성분을 이용하는 결합된 다중 노벨티 신경망 인식기를 제안하고 부분공간 인식기와 결합을 통해 인식률을 제고하는 방법을 제시한다. 필기체 숫자 데이터베이스에 대해서 제안한 인식기를 구성하고 특성을 분석한다. 제안한 방법은 다른 인식기들에 비해서 신경망에 사용된 가중치의 수는 증가하지만 가장 우수한 인식 성능을 나타내었다.
필기체 숫자는 개인에 따라 필체가 매우 다양하므로 단일 특징과 단일 분류기를 사용하여 오프라인 필기체 숫자인식을 수행할 경우 높은 인식률을 얻기가 어렵다. 이에 본 논문에서는 복합 특징과 결합 인식기를 사용하여 필기체 숫자 인식의 인식률을 향상시키는 방안을 제시한다. 인식률의 향상을 위해, 먼저 상호 보완적인 특징들-방향특징, 교차점특징, 망특징-을 선정하고 이를 사용하여 숫자영상의 전역적 및 국부적 특징을 갖는 세 종류의 새로운 복합 특징을 구성한다. 그리고 패턴 인식기로는 세 개의 신경회로망 분류기를 퍼지 적분으로 결합한 결합 인식기를 사용한다. 본 인식기의 성능 평가를 위해 Concordia 대차의 무제약 필기체 숫자 데이터베이스를 사용하여 실험한 결과 97.85%의 인식률을 달성하였다.
본 연구의 목적은 한국어 수분류사 체계를 설정하고, 수분류사와 공기명사 간 의미관계 정보를 제공하는 한국어 수분류사 어휘의미망 "KorLexClas 1.5"의 정보구조와 구축방식을 소개하는 데 있다. KorLex 명사, 동사, 형용사, 부사가 영어 워드넷(Princeton WordNet)을 기반으로 참고구축 방식으로 개발된 것에 비해, KorLexClas 1.0버전과 이를 확장한 1.5버전은 직접구축 방식으로 개발하였다는 점에서, 수분류사의 계층구조와 언어단위 간 의미관계 설정은 매우 방대한 시간과 정교한 구축 방식을 요구한다. 따라서 작업의 효율성을 기함과 동시에, 구축된 어휘의미망의 신뢰성 및 확장성을 높이기 위해, (1) 다양한 기구축 언어자원을 활용하되 상호 검증하는 절차를 거치고, (2) 부분문장 분석방법을 이용하여, 수분류사 및 공기명사 목록을 확장하며, (3) 언어학적 준거를 기준으로 수분류사의 계층구조를 설정하고, (4) 수분류사와 공기명사 간 의미관계 정보를 제공하되 확장성을 확보하기 위해, KorLexNoun 1.5에 '최하위 공통상 위노드(LUB : Least Upper Bound)'를 설정하는 방식을 택한다. 이러한 특성을 가진 KorLexClas 1.5는 기계번역을 비롯한 한국어정보처리의 제 분야에 응용될 수 있다.
좋은 분류기 앙상블은 분류기간에 상호 보완성을 갖추어 높은 인식 성능을 보여야 하며, 크기가 작아 계산 효율이 좋아야 한다. 이 논문은 이러한 목적을 달성하기 위한 거친-섬세한 (coarse-to-fine)단계를 밟는 분류기 앙상블 선택 방법을 제안한다. 이 방법이 성공하기 위해서는 초기 분류기 풀 (pool)이 충분히 다양해야 한다. 이 논문에서는 여러 개의 서로 다른 분류 알고리즘과 아주 많은 수의 특징 부분집합을 결합하여 충분히 큰 분류기 풀을 생성한다. 거친 선택 단계에서는 분류기 풀의 크기를 적절하게 줄이는 것이 목적이다. 분류기 군집화 알고리즘을 사용하여 다양성을 최소로 희생하는 조건하에 분류기 풀의 크기를 줄인다. 섬세한 선택에서는 유전 알고리즘을 이용하여 최적의 앙상블을 찾는다. 또한 탐색 성능이 개선된 혼합 유전 알고리즘을 제안한다. 널리 사용되는 필기 숫자 데이타베이스를 이용하여 기존의 단일 단계 방법과 제안한 두 단계 방법의 성능을 비교한 결과 제안한 알고리즘이 우수함을 입증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.