• 제목/요약/키워드: Numeral Classifier

검색결과 23건 처리시간 0.023초

A Hybrid SVM-HMM Method for Handwritten Numeral Recognition

  • Kim, Eui-Chan;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1032-1035
    • /
    • 2003
  • The field of handwriting recognition has been researched for many years. A hybrid classifier has been proven to be able to increase the recognition rate compared with a single classifier. In this paper, we combine support vector machine (SVM) and hidden Markov model (HMM) for offline handwritten numeral recognition. To improve the performance, we extract features adapted for each classifier and propose the modified SVM decision structure. The experimental results show that the proposed method can achieve improved recognition rate for handwritten numeral recognition.

  • PDF

Offline Handwritten Numeral Recognition Using Multiple Features and SVM classifier

  • Kim, Gab-Soon;Park, Joong-Jo
    • 전기전자학회논문지
    • /
    • 제19권4호
    • /
    • pp.526-534
    • /
    • 2015
  • In this paper, we studied the use of the foreground and background features and SVM classifier to improve the accuracy of offline handwritten numeral recognition. The foreground features are two directional features: directional gradient feature by Kirsch operators and directional stroke feature by local shrinking and expanding operations, and the background feature is concavity feature which is extracted from the convex hull of the numeral, where the concavity feature functions as complement to the directional features. During classification of the numeral, these three features are combined to obtain good discrimination power. The efficiency of our scheme is tested by recognition experiments on the handwritten numeral database CENPARMI, where SVM classifier with RBF kernel is used. The experimental results show the usefulness of our scheme and recognition rate of 99.10% is achieved.

고유벡터를 이용한 필기체 숫자인식 (Recognition of Handwritten Numerals using Eigenvectors)

  • 박중조;김경민;송명현
    • 한국정보통신학회논문지
    • /
    • 제6권6호
    • /
    • pp.986-991
    • /
    • 2002
  • 본 논문에서는 고유벡터를 이용한 오프라인 필기체 숫자인식 기법을 제시한다. 본 기법에서는 KL 변환에 의한 고유벡터를 이용하여 통계적으로 숫자의 특징을 추출하며, 특징공간상에서 최소거리기법으로 숫자를 인식한다. 본 기법에서 제안된 특징추출 방법에서는 많은 표본 숫자영상에서 각 숫자들의 특징을 가장 잘 표현하는 기저벡터를 찾아내고 이로부터 숫자의 특징을 구한다. 제시된 기법의 성능 평가를 위해 Concordia대학의 무제약 필기체 숫자 데이터베이스를 사용하여 실험한 결과 96.2%의 인식률을 얻을 수 있었다.

KL변환에 의한 오프라인 필기체 숫자인식 (Recognition of Off-line Handwritten Numerals using KL Transformation)

  • 박중조;김경민;송명현
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2002년도 추계종합학술대회
    • /
    • pp.912-915
    • /
    • 2002
  • 본 연구에서는 KL변환에 의한 고유벡터를 구하고, 이를 이용한 오프라인 필기체 숫자인식 기법을 제시하고자 한다. 본 기법에서는 KL 변환에 의한 고유벡터를 이용하여 통계적으로 숫자의 특징을 추출하며, 특징 공간상에서 최소거리 기법으로 숫자를 인식한다. 본 기법에서 제안된 특징추출 방법에서는 많은 표본 숫자영상에서 각 숫자들의 특징을 가장 잘 표현하는 기저벡터를 찾아내고 이로부터 필기체숫자의 특징을 구한다. 제안된 기법의 성능 평가를 위해 캐나다 Concordia 대학의 무제약 필기체 숫자 데이터베이스를 사용하였으며, 실험한 결과 인식률은 96.2%이었다.

  • PDF

A Contour Descriptors-Based Generalized Scheme for Handwritten Odia Numerals Recognition

  • Mishra, Tusar Kanti;Majhi, Banshidhar;Dash, Ratnakar
    • Journal of Information Processing Systems
    • /
    • 제13권1호
    • /
    • pp.174-183
    • /
    • 2017
  • In this paper, we propose a novel feature for recognizing handwritten Odia numerals. By using polygonal approximation, each numeral is segmented into segments of equal pixel counts where the centroid of the character is kept as the origin. Three primitive contour features namely, distance (l), angle (${\theta}$), and arc-tochord ratio (r), are extracted from these segments. These features are used in a neural classifier so that the numerals are recognized. Other existing features are also considered for being recognized in the neural classifier, in order to perform a comparative analysis. We carried out a simulation on a large data set and conducted a comparative analysis with other features with respect to recognition accuracy and time requirements. Furthermore, we also applied the feature to the numeral recognition of two other languages-Bangla and English. In general, we observed that our proposed contour features outperform other schemes.

복합특징과 SVM 분류기를 이용한 필기체 숫자인식 (Handwritten Numeral Recognition using Composite Features and SVM classifier)

  • 박중조;김태웅;김경민
    • 한국정보통신학회논문지
    • /
    • 제14권12호
    • /
    • pp.2761-2768
    • /
    • 2010
  • 본 논문에서는 숫자의 전경특징과 배경특징을 이용하고 SVM 분류기를 사용하여 오프라인 필기체 숫자인식에서 인식률을 향상시키는 방안을 제시한다. 숫자의 전경특징은 숫자의 에지선을 추출한 Kirsch 방향특징과 숫자선 자체를 추출한 projection 방향특징으로 구성되며, 숫자의 배경특징은 숫자의 볼록외피로 부터 추출되는 오목특징이다. 여기서 오목특징은 방향특징에 대해 보완적인 특징으로 작용하여 분류 성능 향상에 기여한다. 인식기로는 RBF 커널을 이용한 SVM 분류기를 사용하고, CENPAMI 숫자특징 데이터베이스를 사용하여 제시된 방법의 성능을 검사하였다. 실험 결과 각기 다른 분류 성능을 갖는 이들 3종의 특징들이 상호 보완적으로 작용하여 인식률 향상에 기여함을 확인할 수 있었으며, 제시된 복합특징에 의해 98.90%의 인식률을 달성하였다.

Karhunen-Loeve 변환 기반의 부분공간 인식기와 결합된 다중 노벨티 인식기를 이용한 필기체 숫자 인식 (Handwritten Numeral Recognition Using Karhunen-Loeve Transform Based Subspace Classifier and Combined Multiple Novelty Classifiers)

  • 임길택;진성일
    • 전자공학회논문지C
    • /
    • 제35C권6호
    • /
    • pp.88-98
    • /
    • 1998
  • 부분공간 인식기는 Karhunen-Loeve (KL) 변환을 기반으로 하는 대표적인 패턴인식 방법이다. 이 부분 공간 인식기는 고차원의 패턴을 저차원의 부분공간에 나타내어 인식을 한다. 그러나 차원 감축으로 인한 정보의 손실로 principal components가 유사하게 나타나는 패턴간에는 분별이 어려워지는 단점이 있다. 본 논문에서는 이러한 부분공간 인식기의 단점을 해결하기 위해 일반적으로 무시되는 minor components로 표현되는 패턴의 노벨티 성분을 이용하는 결합된 다중 노벨티 신경망 인식기를 제안하고 부분공간 인식기와 결합을 통해 인식률을 제고하는 방법을 제시한다. 필기체 숫자 데이터베이스에 대해서 제안한 인식기를 구성하고 특성을 분석한다. 제안한 방법은 다른 인식기들에 비해서 신경망에 사용된 가중치의 수는 증가하지만 가장 우수한 인식 성능을 나타내었다.

  • PDF

복합 특징과 결합 인식기에 의한 필기체 숫자인식 (Recognition of Handwritten Numerals using Hybrid Features And Combined Classifier)

  • 박중조;송영기;김경민
    • 한국정보통신학회논문지
    • /
    • 제5권1호
    • /
    • pp.14-22
    • /
    • 2001
  • 필기체 숫자는 개인에 따라 필체가 매우 다양하므로 단일 특징과 단일 분류기를 사용하여 오프라인 필기체 숫자인식을 수행할 경우 높은 인식률을 얻기가 어렵다. 이에 본 논문에서는 복합 특징과 결합 인식기를 사용하여 필기체 숫자 인식의 인식률을 향상시키는 방안을 제시한다. 인식률의 향상을 위해, 먼저 상호 보완적인 특징들-방향특징, 교차점특징, 망특징-을 선정하고 이를 사용하여 숫자영상의 전역적 및 국부적 특징을 갖는 세 종류의 새로운 복합 특징을 구성한다. 그리고 패턴 인식기로는 세 개의 신경회로망 분류기를 퍼지 적분으로 결합한 결합 인식기를 사용한다. 본 인식기의 성능 평가를 위해 Concordia 대차의 무제약 필기체 숫자 데이터베이스를 사용하여 실험한 결과 97.85%의 인식률을 달성하였다.

  • PDF

한국어 수분류사 어휘의미망 KorLexClas 1.5 (KorLexClas 1.5: A Lexical Semantic Network for Korean Numeral Classifiers)

  • 황순희;권혁철;윤애선
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권1호
    • /
    • pp.60-73
    • /
    • 2010
  • 본 연구의 목적은 한국어 수분류사 체계를 설정하고, 수분류사와 공기명사 간 의미관계 정보를 제공하는 한국어 수분류사 어휘의미망 "KorLexClas 1.5"의 정보구조와 구축방식을 소개하는 데 있다. KorLex 명사, 동사, 형용사, 부사가 영어 워드넷(Princeton WordNet)을 기반으로 참고구축 방식으로 개발된 것에 비해, KorLexClas 1.0버전과 이를 확장한 1.5버전은 직접구축 방식으로 개발하였다는 점에서, 수분류사의 계층구조와 언어단위 간 의미관계 설정은 매우 방대한 시간과 정교한 구축 방식을 요구한다. 따라서 작업의 효율성을 기함과 동시에, 구축된 어휘의미망의 신뢰성 및 확장성을 높이기 위해, (1) 다양한 기구축 언어자원을 활용하되 상호 검증하는 절차를 거치고, (2) 부분문장 분석방법을 이용하여, 수분류사 및 공기명사 목록을 확장하며, (3) 언어학적 준거를 기준으로 수분류사의 계층구조를 설정하고, (4) 수분류사와 공기명사 간 의미관계 정보를 제공하되 확장성을 확보하기 위해, KorLexNoun 1.5에 '최하위 공통상 위노드(LUB : Least Upper Bound)'를 설정하는 방식을 택한다. 이러한 특성을 가진 KorLexClas 1.5는 기계번역을 비롯한 한국어정보처리의 제 분야에 응용될 수 있다.

군집화와 유전 알고리즘을 이용한 거친-섬세한 분류기 앙상블 선택 (Coarse-to-fine Classifier Ensemble Selection using Clustering and Genetic Algorithms)

  • 김영원;오일석
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권9호
    • /
    • pp.857-868
    • /
    • 2007
  • 좋은 분류기 앙상블은 분류기간에 상호 보완성을 갖추어 높은 인식 성능을 보여야 하며, 크기가 작아 계산 효율이 좋아야 한다. 이 논문은 이러한 목적을 달성하기 위한 거친-섬세한 (coarse-to-fine)단계를 밟는 분류기 앙상블 선택 방법을 제안한다. 이 방법이 성공하기 위해서는 초기 분류기 풀 (pool)이 충분히 다양해야 한다. 이 논문에서는 여러 개의 서로 다른 분류 알고리즘과 아주 많은 수의 특징 부분집합을 결합하여 충분히 큰 분류기 풀을 생성한다. 거친 선택 단계에서는 분류기 풀의 크기를 적절하게 줄이는 것이 목적이다. 분류기 군집화 알고리즘을 사용하여 다양성을 최소로 희생하는 조건하에 분류기 풀의 크기를 줄인다. 섬세한 선택에서는 유전 알고리즘을 이용하여 최적의 앙상블을 찾는다. 또한 탐색 성능이 개선된 혼합 유전 알고리즘을 제안한다. 널리 사용되는 필기 숫자 데이타베이스를 이용하여 기존의 단일 단계 방법과 제안한 두 단계 방법의 성능을 비교한 결과 제안한 알고리즘이 우수함을 입증하였다.