• Title/Summary/Keyword: Number of Cracks

Search Result 381, Processing Time 0.025 seconds

A Study of Effects on Building for Cracks by Ground Vibration -Pusan Andesite- (지반진동이 건물의 균열에 미치는 영향에 관한 연구 -부산 안산암지역을 대상으로-)

  • 안명석;박종남;이영대
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1173-1179
    • /
    • 1999
  • A study was made on crack developments of the nearly building due to rock blasting for road construction at the 623 Common Block near the rear side of the Gamchun Habor. The gelogy of the study area is composed of andesite, which belongs to the Kyungsang System of the Cretaceous Period. For 3 months of blasting events, the vibration velocity data were measured at the site just in front of the K freezing factory. The data were divided into 4 groups according to the period of blasting(i.e, DATA 1, DATA 2, DATA 3 and DATA 4), for deriving K and n values. As a result, DATA 1 shows that K and n were 83.3756 and -0.848, respectively, and then K and n were progressively increased in absolute values for the follow-up groups and the last DATA 4 shows K and n were 2980.4898 and -1.502, respectively. Such differences in K and n values may be due to partly : 1) variations geological characteristics, from the upper rather weathered, fisssuring soft rocks at the earlier stage less weathered and fissuring hard rocks at the later stage of blasting events, and 2) the geometry between the blasting and detecting points.Among the total count of 225 blasting events, the number exceeding the safety limits of 0.5cm/sec was 20(8.9% of the total), the maximum displacement detected at the crack gage was 0.25mm, the level of which is far less to cause the occurrence and development of any cracks to the K factory. Therefore, it was confirmed that there were no damages such as structural failure or safety problem to the building.

  • PDF

Fracture Mechanisms of Cold-Rolled Light-Weight Steel Plates Containing Different Carbon Content (탄소함량이 다른 경량철강판의 냉간 압연에 의한 파괴기구)

  • Han, Seung Youb;Shin, Sang Yong;Lee, Sunghak;Kim, Nack J.;Kwak, Jai-Hyun;Chin, Kwang-Geun
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.5
    • /
    • pp.377-386
    • /
    • 2010
  • An investigation was conducted into the effects of $\kappa$-carbides on the cracking phenomenon, which often occurred in cold-rolled light-weight steel plates. Three kinds of steels were fabricated by varying the C content, and their microstructures and tensile properties were investigated. In the two steels that contained a high carbon content, the band structures of ferrites and $\kappa$-carbides that were severely elongated along the rolling direction were well developed, whereas continuous arrays of $\kappa$-carbides were formed in the steel that contained a low carbon content. Detailed microstructural analyses of the deformed region beneath the tensile fracture surface showed that the cracks initiated at arrays of $\kappa$-carbides or $\kappa$-carbides formed interfaces between the band structures, which initiated cleavage fractures in the ferrite bands, while the bands populated with a number of $\kappa$-carbides did not play an important role in propagating the cracks. Thus, the minimization of interfacial $\kappa$-carbides or $\kappa$-carbide arrays by increasing the carbon content was essential for preventing cracking from occurring during cold rolling.

Study of Optimal Machining Conditions of Ultrasonic Machining By Taguchi's Method (다구찌 방법을 이용한 초음파 가공의 최적가공조건에 관한 연구)

  • Liu, Jun Wei;Jin, Jian;Ko, Tae Jo;Baek, Dae Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.213-218
    • /
    • 2013
  • Ultrasonic machining (USM) is a new method used in metal cutting. This process does not involve heating or any electrochemical effects, causes low surface damage, has small residual stress, and does not rely on the conductivity of the workpiece. These characteristics are suitable for the machining of brittle materials such as glass or ceramics. However, the use of USM for brittle materials generates cracks on the workpiece. Therefore, in this study, Taguchi's method was used to optimize the processing conditions of micro holes drilled in glass and ceramics. This method was used to successfully reduce the number of cracks at the entrance and the exit of the micro holes.

Establishment of Hygrothermal Aging Mechanism via Thermal Analysis and Extraction of Reaction Kinetics of Ti Metal-based Pyrotechnic Materials (티타늄 금속 기반의 파이로테크닉 물질에 대한 열분석 및 반응특성 추출을 통한 열·수분 노화 메커니즘 구축)

  • Oh, Juyoung;Yoh, Jai-ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.9
    • /
    • pp.759-769
    • /
    • 2021
  • For aerospace propulsion systems, Titanium Hydride Potassium Perchlorate (THPP) is a material commonly used as a pyrotechnic initiator that generates gas when energy is supplied or as a supplement charge for NASA standard initiator (NSI). However, when the energetic materials are stored for a long time, it faces the problem of 'aging'. In this study, changes in thermodynamic properties of THPP aged under various humidity environments were identified through thermal analysis and surface analysis. First, a considerable amount of cracks on the surface of the oxidant was found in the aged THPPs. Particularly, when the humidity level increased, the number and length of the cracks rapidly increased. Also, the deterioration of Viton was found only in the thermally aged sample whereas the oxidation of the fuel was more pronounced in the hygrothermally aged samples. The extracted kinetic parameters of THPP on the reaction progress vary greatly by the humidity level, indicating that moisture significantly changes the performance and combustion reaction of THPP, which may eventually result in a reduced lifespan.

Three-Dimensional Virtual Crack Closure Technique Based on Anisoparametric Model for Stress Intensity Factors of Patch Repaired Plates with Cracks at Notches (접착 보강된 노치 균열판의 응력확대계수 산정을 위한 비등매개변수 모델 기반의 3차원 가상균열닫힘법)

  • Ahn, Jae-Seok;Woo, Kwang-Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1A
    • /
    • pp.39-48
    • /
    • 2012
  • This study deals with numerical determination of stress intensity factors of adhesively patch-repaired plates with cracks at V-shaped or semicircular notches. The p-convergent anisoparametric model are considered and then three-dimensional virtual crack closure technique is presented using formulations of anisoparametric elements. In assumed displacement fields of an element, strain-displacement relations and three-dimensional constitutive equations are derived with three-dimensional hierarchical shape functions expanded from one-dimensional Lobatto functions. Transfinite mapping technique is used to represent a circular boundary. The present model provides accuracy and simplicity in terms of stress concentration factor, stress distribution, the number of degrees of freedom, and non-dimensional stress intensity factor as compared with previous works in literatures. Stress intensity factors obtained by the three-dimensional virtual crack closure technique are estimated with respect to the variation of width of finite plate, radius of notch root, angular inclination of V-shaped notch, and crack length.

Identification on Fatigue Failure of Impeller at Single Stage Feedwater Pumps During Commissioning Operation (단단 주 급수 펌프 임펠러에서 시운전 중 발생한 피로 절손에 관한 규명 연구)

  • Kim, Yeon-Whan;Kim, Kye-Yean;Bae, Chun-Hee;Lee, Young-Shin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.9
    • /
    • pp.937-942
    • /
    • 2008
  • This paper presents a case history on failures of impeller and shaft due to pressure pulsation at single stage feed water pumps in 700 MW nuclear power plant during commissioning operation. The pumps had been service and had run for approximately $40{\sim}50$ hours. For the most part, the failures of impeller occurred with the presence of a number of fatigue cracks. All cracks were associated with the deleterious surface layer of impeller by visual and metallurgical examination. On-site testing and analytical approach was performed on the systems to diagnose the problem and develop a solution to reduce the effect of exciting sources. A major concern at high-energy centrifugal pump is the pressure pulsation created from trailing edge of the Impeller blade, flow separation and recirculation at centrifugal pumps of partial load. Pressure pulsation due to the interaction generating between impeller and casing coincided with natural frequencies of the impeller and shaft system during 1ow load operation. It was identified that dynamic stress exceeding the fatigue strength of the material at the thin shroud section due to the hydraulic instability at running condition below BEP.

Structural health monitoring of high-speed railway tracks using diffuse ultrasonic wave-based condition contrast: theory and validation

  • Wang, Kai;Cao, Wuxiong;Su, Zhongqing;Wang, Pengxiang;Zhang, Xiongjie;Chen, Lijun;Guan, Ruiqi;Lu, Ye
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.227-239
    • /
    • 2020
  • Despite proven effectiveness and accuracy in laboratories, the existing damage assessment based on guided ultrasonic waves (GUWs) or acoustic emission (AE) confronts challenges when extended to real-world structural health monitoring (SHM) for railway tracks. Central to the concerns are the extremely complex signal appearance due to highly dispersive and multimodal wave features, restriction on transducer installations, and severe contaminations of ambient noise. It remains a critical yet unsolved problem along with recent attempts to implement SHM in bourgeoning high-speed railway (HSR). By leveraging authors' continued endeavours, an SHM framework, based on actively generated diffuse ultrasonic waves (DUWs) and a benchmark-free condition contrast algorithm, has been developed and deployed via an all-in-one SHM system. Miniaturized lead zirconate titanate (PZT) wafers are utilized to generate and acquire DUWs in long-range railway tracks. Fatigue cracks in the tracks show unique contact behaviours under different conditions of external loads and further disturb DUW propagation. By contrast DUW propagation traits, fatigue cracks in railway tracks can be characterised quantitatively and the holistic health status of the tracks can be evaluated in a real-time manner. Compared with GUW- or AE-based methods, the DUW-driven inspection philosophy exhibits immunity to ambient noise and measurement uncertainty, less dependence on baseline signals, use of significantly reduced number of transducers, and high robustness in atrocious engineering conditions. Conformance tests are performed on HSR tracks, in which the evolution of fatigue damage is monitored continuously and quantitatively, demonstrating effectiveness, adaptability, reliability and robustness of DUW-driven SHM towards HSR applications.

A Study on the Crack-propagation Mechanism of Pre-splitting Method with Consideration of Stress Field (응력장을 고려한 프리스플리팅 공법의 균열발생 원리에 대한 연구)

  • Yoon, Ji-Sun;Woo, Taek-Gyu;Kim, Min-Woo;Jang, Young-Min
    • Explosives and Blasting
    • /
    • v.27 no.2
    • /
    • pp.1-11
    • /
    • 2009
  • Abstract By investigating the stress redistribution caused by the preceding cut blasting when applying the pre-splitting method to tunnel round, an attempt was made to find conditions that were favorable for the propagation of cracks in contour holes. The investigation of the direction of minor principal stress in the numerical analysis revealed that the most significant factor affecting the change of the direction was the loading condition, while the core shape, rock type, and tunnel depth seemed to be less important in determining the direction of minor principal stress. Moreover, the number of cracks tended to increase with the increase of deviatoric stress. Through the model test of pre-splitting, it is confirmed that the pre-splitting method taking the stress field into account can reduce the extent of yield zone and has advantage in controlling the direction of crack than the conventional one.

Workability and compressive behavior of PVA-ECC with CNTs

  • Lee, Dongmin;Lee, Seong-Cheol;Yoo, Sung-Won
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.311-320
    • /
    • 2022
  • TBM concrete segment requires a higher level of material properties compared to general concrete structures due to difficulties in maintenance and uncertainty in ground conditions. In this regard, recently, as one of the methods to achieve enhancement effect on concrete strength, many researchers have been focusing on adding CNTs to concrete mixture. However, even CNTs do not compensate the weakness that concrete exhibits brittle behavior after cracking. Separately, over the past few decades, a number of studies have been conducted on fiber reinforced concrete which exhibits ductile behavior due to fibers bridging cracks. However, only limited studies have been conducted to employ the advantages of the both materials together. In this study, an experimental program has been conducted to investigate the effect of CNTs on the workability and the compressive behavior of PVA-ECC which exhibits ductile tensile behavior with well-distributed cracks even without a conventional rebar. In addition to the compression test, SEM analysis has been also conducted for detailed investigation in the microstructure. The variable was the CNTs mix ratio, which were set to 0.00, 0.25, and 0.50 wt.% to the binding materials. It was observed though the test results that as the CNTs mix ratio increased, the workability considerably decreased with the reduced slump and slump flow. From the compression test results, it was also investigated that the compressive behavior was improved since the compressive strength, the strain corresponding to the compressive strength, and the modulus of elasticity increased with an increase of CNTs mix ratio. The contents of this paper will be useful for relevant research areas such as fiber reinforced concrete with CNTs which might be applied for high performance TMB concrete segments.

Differences in Cold Rolling Workability and Mechanical Properties between Al-Mg-Si and Al-Mg-Zn System Alloys with Cold Rolling (냉간압연가공에 따른 Al-5.5Mg-2.9Si계와 Al-7Mg-0.9Zn계 합금의 압연가공성 및 기계적 특성 차이)

  • Yang, Ji-Hun;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.628-634
    • /
    • 2016
  • The cold rolling workability and mechanical properties of two new alloys, designed and cast Al-5.5Mg-2.9Si and Al-7Mg-0.9Zn alloys, were investigated in detail. The two alloy sheets of 4 mm thickness, 30 mm width and 100 mm length were reduced to a thickness of 1 mm by multi-pass rolling at ambient temperature. The rolling workability was better for the Al-7Mg-0.9Zn alloy than for the Al-5.5Mg-2.9Si alloy; in case of the former alloy, edge cracks began to occur at 50% rolling reduction, and their number and length increased with rolling reduction; however, in the latter alloy, the sheets did not have any cracks even at higher rolling reduction. The mechanical properties of tensile strength and elongation were also better in the Al-7Mg-0.9Zn alloy than in Al-5.5Mg-2.9Si alloy. Work hardening ability after cold rolling was also higher in the Al-7Mg-0.9Zn alloy than in the Al-5.5Mg-2.9Si alloy. At the same time, the texture development was very similar for both alloys; typical rolling texture developed in both alloys. These differences in the two alloys can primarily be explained by the existence of precipitates of $Mg_2Si$. It is concluded that the Al-7Mg-0.9Zn alloy is better than the Al-5.5Mg-2.9Si alloy in terms of mechanical properties.