DOI QR코드

DOI QR Code

Establishment of Hygrothermal Aging Mechanism via Thermal Analysis and Extraction of Reaction Kinetics of Ti Metal-based Pyrotechnic Materials

티타늄 금속 기반의 파이로테크닉 물질에 대한 열분석 및 반응특성 추출을 통한 열·수분 노화 메커니즘 구축

  • Oh, Juyoung (Department of Aerospace Engineering, Seoul National University) ;
  • Yoh, Jai-ick (Department of Aerospace Engineering, Seoul National University)
  • Received : 2021.04.16
  • Accepted : 2021.07.14
  • Published : 2021.09.01

Abstract

For aerospace propulsion systems, Titanium Hydride Potassium Perchlorate (THPP) is a material commonly used as a pyrotechnic initiator that generates gas when energy is supplied or as a supplement charge for NASA standard initiator (NSI). However, when the energetic materials are stored for a long time, it faces the problem of 'aging'. In this study, changes in thermodynamic properties of THPP aged under various humidity environments were identified through thermal analysis and surface analysis. First, a considerable amount of cracks on the surface of the oxidant was found in the aged THPPs. Particularly, when the humidity level increased, the number and length of the cracks rapidly increased. Also, the deterioration of Viton was found only in the thermally aged sample whereas the oxidation of the fuel was more pronounced in the hygrothermally aged samples. The extracted kinetic parameters of THPP on the reaction progress vary greatly by the humidity level, indicating that moisture significantly changes the performance and combustion reaction of THPP, which may eventually result in a reduced lifespan.

발사체 추진 시스템에서 Titanium Hydride Potassium Perchlorate (THPP)는 에너지를 인가받으면 gas를 발생시키는 pyrotechnic initiator로써 혹은 NASA Standard Initiator (NSI)의 supplement charge로써 흔히 사용되는 물질이다. 하지만 금속으로 이루어진 복합 화약이 오랫동안 보관이 되면 노화라는 문제에 직면하게 된다. 본 연구에서는 열분석 및 표면분석을 통하여 다양한 습도환경에서 노화된 THPP에 대하여 열역학적 특성의 변화를 확인하였고, 이를 바탕으로 THPP에 대한 전반적인 노화 메커니즘을 구축해내었다. 우선, THPP가 노화됨에 따라 산화제 표면의 균열빈도가 증가하고 길이가 길어졌는데, 이는 열·수분 노화가 공통적으로 산화제의 분해를 초래함을 보여준다. 이때 열 노화된 경우 Viton의 열화 현상이, 수분 노화된 경우 연료의 산화가 더욱 두드러졌다. 또한 실험을 통해 계산된 반응률에 대한 THPP의 화학반응인자의 경우 습도에 따라 크게 달라졌는데, 이는 수분이 THPP의 연소에 상당한 변화를 미쳐 결국에는 수명의 감소로 이어지게 될 것을 시사한다.

Keywords

Acknowledgement

본 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다(NRF-2020R1F1A1072007).

References

  1. Oh, J., Ambekar, A. and Yoh, J. J., "The hygrothermal aging effects of titanium hydride potassium perchlorate for pyrotechnic combustion," Thermochimica Acta, Vol. 665, No. 1, 2018, pp. 102~110. https://doi.org/10.1016/j.tca.2018.05.019
  2. Ambekar, A. and Yoh, J. J., "Chemical kinetics of multi-component pyrotechnics and mechanistic deconvolution of variable activation energy," Proceedings of the Combustion Institute, Vol. 37, 2019, pp. 3193~3201. https://doi.org/10.1016/j.proci.2018.05.142
  3. Ryu, J. H., Yang, J. H. and Yoh, J. J., "A non-calorimetric approach for investigating the moisture-induced ageing of a pyrotechnic delay material using spectroscopies," Scientific Reports, Vol. 9, No. 1, 2019, pp. 1~10. https://doi.org/10.1038/s41598-018-37186-2
  4. Han, B. H., Kim, Y., Jang, S., Yoo, J. and Yoh, J. J., "Thermochemical characterization of Zr/Fe2O3 pyrotechnic mixture under natural aging conditions," Journal of Applied Physics, Vol. 126, No. 10, 2019, pp. 105113. https://doi.org/10.1063/1.5096803
  5. Jackson, S. I., Anderson, E. K. and Hill, L. G., "Direct measurement of energy loss due to aging effects in the condensed phase explosive PBX 9404," Proceedings of the Combustion Institute, Vol. 27, 2019, pp. 3645~3652.
  6. Farhadian, A. H., Tehrani, M. K., Keshavarz, M. H., Karimi, M., Darbani, S. M. R. and Rezayi, A. H., "A novel approach for investigation of chemical aging in composite propellants through laser-induced breakdown spectroscopy (LIBS)," Journal of Thermal Analysis abd Calorimetry, Vol. 124, No. 1, 2016, pp. 279~286. https://doi.org/10.1007/s10973-015-5116-9
  7. Roduit, B., Luyet, C. A., Hartmann, M., Folly, P., Sarbach, A., Dejeaifve, A., Dobson, R., Schroeter, N., Vorlet, O., Dabros, M. and Baltensperger, R., "Continuous monitoring of shelf lives of materials by application of data loggers with implemented kinetic parameters," Molecules, Vol. 24, No. 12, 2019, p. 2217. https://doi.org/10.3390/molecules24122217
  8. Oh, J., Jang, S. G. and Yoh, J. J., "Towards understanding the effects of heat and humidity on ageing of a NASA standard pyrotechnic igniter," Scientific reports, Vol. 9, No. 1, 2019, pp. 1~12. https://doi.org/10.1038/s41598-018-37186-2
  9. Pouretedal, H. R. and Ravanbod, M., "Kinetic study of ignition of Mg/NaNO3 pyrotechnic using non-isothermal TG/DSC technique," Journal of Thermal Analysis and Calorimetry, Vol. 119, No. 3, 2015, pp. 2281~2288. https://doi.org/10.1007/s10973-014-4330-1
  10. Ozawa, T., "A new method of analyzing thermogravimetric data," Bulletin of the Chemical Society of Japan, Vol. 38, No. 11, 1965, pp. 1881~1886. https://doi.org/10.1246/bcsj.38.1881
  11. Flynn, J. H. and Leo, A., "General treatment of the thermogravimetry of polymers," Journal of Research of the National Bureau of Standards. Section A, Physics and chemistry, Vol. 70, No. 6, 1966, pp. 487~523. https://doi.org/10.6028/jres.070A.043
  12. Vyazovkin, S., Burnham, A. K., Criado, J. M., Perez-Maqueda, L. A., Popescu, C. and Sbirrazzuoli, N., "ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data," Thermochimica Acta, Vol. 520, No. 1-2, 2011, pp. 1~19. https://doi.org/10.1016/j.tca.2011.03.034
  13. Pantoya, M. L. and Granier, J. J., "The effect of slow heating rates on the reaction mechanisms of nano and micron composite thermite reactions," Journal of Thermal Analysis and Calorimetry, Vol. 85, No. 1, 2006, pp. 37~43. https://doi.org/10.1007/s10973-005-7342-z
  14. Sorensen, D. N., Quebral, A. P., Baroody, E. E. and Sanborn, W. B., "Investigation of the thermal degradation of the aged pyrotechnic titanium hydride/potassium perchlorate," Journal of Thermal Analysis and Calorimetry, Vol. 85, No. 1, 2006, pp. 151~156. https://doi.org/10.1007/s10973-005-7365-5
  15. Sanborn, W. and Boyd, D., "The accelerated aging of the pyrotechnic materials THPP and ZPP," Proceedings of the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Hartford, CT, 2008, p. 4720.
  16. Lu, K. T. and Yang, C. C., "Thermal Analysis Studies on the Slow Propagation Tungsten Type Delay Composition System," Propellants, Explosives, Pyrotechnics: An International Journal Dealing with Scientific and Technological Aspects of Energetic Materials, Vol. 33, No. 5, 2008, pp. 403~410. https://doi.org/10.1002/prep.200700287
  17. Chen, K. S., "A simplified model of TiH1. 65/KClO4 pyrotechnic ignition," Sandia National Laboratories, 2009, Report No. SAND2009-1217.
  18. Bhosle, V., Baburaj, E. G., Miranova, M. and Salama, K., "Dehydrogenation of TiH2," Materials Science and Engineering: A, Vol. 356, No. 1-2, 2003, pp. 190~199. https://doi.org/10.1016/S0921-5093(03)00117-5
  19. Liu, H., He, P., Feng, J. C. and Cao, J., "Kinetic study on nonisothermal dehydrogenation of TiH2 powders," International Journal of Hydrogen Energy, Vol. 34, No. 7, 2009, pp. 3018~3025. https://doi.org/10.1016/j.ijhydene.2009.01.095