• Title/Summary/Keyword: Nucleic acid

Search Result 461, Processing Time 0.034 seconds

The Principle and Trends of CRISPR/Cas Diagnosis (CRISPR/Cas 진단의 원리와 현황)

  • Park, Jeewoong;Kang, Bong Keun;Shin, Hwa Hui;Shin, Jun Geun
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.125-142
    • /
    • 2021
  • The POCT (point-of-care test) sensing that has been a fast-developing field is expected to be a next generation technology in health care. The POCT sensors for the detection of proteins, small molecules and especially nucleic acids have lately attracted considerable attention. According to the World Health Organization (WHO), the POCT methods are required to follow the ASSURED guidelines (Affordable, Sensitive, Specific, User- friendly, Robust and rapid, Equipment-free, Deliverable to all people who need the test). Recently, several CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) based diagnostic techniques using the sensitive gene recognition function of CRISPR have been reported. CRISPR/Cas (Cas, CRISPR associated protein) systems based detection technology is the most innovative gene analysis technology that is following the ASSURED guidelines. It is being re-emerged as a powerful diagnostic tool that can detect nucleic acids due to its characteristics that enable rapid, sensitive and specific analyses of nucleic acid. The first CRISPR-based diagnosis begins with the discovery of the additional function of Cas13a. The enzymatic cleavage occurs when the conjugate of Cas protein and CRISPR RNA (crRNA) detect a specific complementary sequence of the target sequence. Enzymatic cleavage occurs on not only the target sequence, but also all surrounding non-target single-stranded RNAs. This discovery was immediately utilized as a biosensor, and numerous sensor studies using CRISPR have been reported since then. In this review, the concept of CRISPR, the characteristics of the Cas protein required for CRISPR diagnosis, the current research trends of CRISPR diagnostic technology, and some aspects to be improved in the future are covered.

Cloning of a $\Delta5$ desaturase from Thraustochytrium sp. 26185 and Functional Expression in Pichia Pastoris (Thraustochytrium sp. 26185 균주에서의 $\Delta5$ desaturase 유전자 클로닝 및 Pichia pastoris 내에서의 기능적 발현)

  • Chung Tae-Ho;Lee Su-Jin;Oh Hyo-Jeong;Kim Geun-Joong;Hur Byung-Ki
    • KSBB Journal
    • /
    • v.20 no.2 s.91
    • /
    • pp.93-99
    • /
    • 2005
  • Polyunsaturated fatty acids, that is PUFAs, are important constituents of membranes particularly found in the retina and central nervous system. In microorganism-based PUFAs biosynthesis, the genus Thraustochytrids is well evaluated for their potential as a promising candidate in the practical production of PUFAs, such as AA and DHA. In this study, we attempted to optimize a method of total nucleic acid extraction from this microorganism as a preliminary experiment. Using the extracted nucleic acid and degenerated primers for direct PCR, we isolated a $\Delta5$ desaturase gene that contained 1320-nucleotide and encoded 439 amino acids. This gene exhibited an expected function, when expressed in P. pastoris in the presence of appropriate exogenous substrate, as an evidence for $\Delta5$ desaturase activity (conversion of DGLA to AA). These results and information could provide a basis for the construction of engineered strains suitable for the practical production of PUFAs.

Recent Advances in Tuberculosis and Nontuberculous Mycobacteria Lung Disease

  • Park, Jae Seuk
    • Tuberculosis and Respiratory Diseases
    • /
    • v.74 no.6
    • /
    • pp.251-255
    • /
    • 2013
  • Tuberculosis (TB) is one of the largest health problems in the world today. And the incidence of nontuberculous mycobacteria (NTM) lung disease appears to be increasing worldwide. Recently, an automated, nucleic acid amplification assay for the rapid detection of both Mycobacterium tuberculosis and rifampin resistance was developed (Xpert MTB/RIF). And fixed-dose combinations of anti-TB drugs and linezolid have been introduced in the treatment of TB. And new NTM species, named Mycobacterium massiliense, which is very closely related to Mycobacterium abscessus was reported. In this review, these recent advances in the diagnosis and treatment of TB and clinical characteristics of M. massiliense lung disease are discussed.

A Photosensitive Glass Chip for DNA Purification of Nucleic Acid Probe Assay

  • Kim, Joon-Ho;Kim, Byung-Gyun;Yoon, Jun-Bo;Euisik Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.4
    • /
    • pp.232-238
    • /
    • 2001
  • A new DNA purification chip is proposed and fabricated for the sample preparation of Nucleic Acid (NA) probe assay. The proposed DNA purification chip is fabricated using photosensitive glass substrate and polydimethylsiloxane (PDMS) cover fixture. We have successfully captured and eluted the DNA using the fabricated photosensitive glass chip. The fabricated DNA purification chip showed a binding capacity of $15ng/\textrm{cm}^2$and a minimum extractable input concentration of $100copies/200\muL$. The proposed DNA purification chip can be applied for low-cost, disposable sample preparation of NA probe assays.

  • PDF

Highly Sensitive PNA Array Platform Technology for Single Nucleotide Mismatch Discrimination

  • Choi, Jae-Jin;Jang, Min-Jeong;Kim, Ji-Hyun;Park, Hee-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.287-293
    • /
    • 2010
  • Reliable discrimination of a single nucleotide mismatch was demonstrated using arrays with peptide nucleic acid (PNA) probes. The newly developed PNA probes immobilization method and hybridization conditions for PNA arrays gave excellent specificity and sensitivity. In addition we compared the specificity, sensitivity, and stability obtained with the PNA and DNA arrays in discriminating single nucleotide mismatches. The PNA arrays had superior perfect match-to-mismatch signal ratios and sensitivities. The relative signal intensities of mismatch PNA probes ranged from 1.6% to 12.1% of the perfect-match PNA probes. These results demonstrated that the PNA arrays were 2.0 to 37.3 times more specific and about 10 times more sensitive than DNA arrays. The PNA array showed the same specificity and sensitivity after 12-month storage at room temperature.

Antisense DNAs as Targeted Genetic Medicine to Treat Cancer

  • Chochung, Yoo-S.
    • Archives of Pharmacal Research
    • /
    • v.26 no.3
    • /
    • pp.183-191
    • /
    • 2003
  • Nucleic acid therapies represent a direct genetic approach for cancer treatment. Such an approach takes advantage of mechanisms that activate genes known to confer a growth advantage to neoplastic cells. The ability to block the expression of these genes allows exploration of normal growth regulation. Progress in antisense technology has been rapid, and the traditional antisense inhibition of gene expression is now viewed on a genomic scale. This global view has led to a new vision in antisense technology, the elimination of nonspecific and undesirable side effects, and ultimately, the generation of more effective and less toxic nucleic acid medicines. Several antisense oligonucleotides are in clinical trials, are well tolerated, and are potentially active therapeutically. Antisense oligonucleotides are promising molecular medicines for treating human cancer in the near future.

Linear Correlation Equation for Retention Factor of Nucleic Acid Using QSPR

  • Zheng, Jinzhu;Han, Soon-Koo;Row, Kyung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.629-633
    • /
    • 2005
  • In the reversed-phase chromatography, the retention time of sample was investigated based on the molecular structure of compound. Several descriptors that were related to retention factors were selected, and then the values of descriptors were calculated with several softwares. The effect of retention factor was measured with calculated values, and the results were obtained that each descriptors of molecular structure of compound have different effect on the retention factor. Therefore, the empirical equation for seven types of descriptors considered was obtained, and it has high values of correlation coefficient. Furthermore, the experimental data and calculated values have good agreement.

Nucleic Acid Aptamers: New Methods for Selection, Stabilization, and Application in Biomedical Science

  • Kong, Hoon Young;Byun, Jonghoe
    • Biomolecules & Therapeutics
    • /
    • v.21 no.6
    • /
    • pp.423-434
    • /
    • 2013
  • The adoption of oligonucleotide aptamer is well on the rise, serving an ever increasing demand for versatility in biomedical field. Through the SELEX (Systematic Evolution of Ligands by EXponential enrichment), aptamer that can bind to specific target with high affinity and specificity can be obtained. Aptamers are single-stranded nucleic acid molecules that can fold into complex three-dimensional structures, forming binding pockets and clefts for the specific recognition and tight binding of any given molecular target. Recently, aptamers have attracted much attention because they not only have all of the advantages of antibodies, but also have unique merits such as thermal stability, ease of synthesis, reversibility, and little immunogenicity. The advent of novel technologies is revolutionizing aptamer applications. Aptamers can be easily modified by various chemical reactions to introduce functional groups and/or nucleotide extensions. They can also be conjugated to therapeutic molecules such as drugs, drug containing carriers, toxins, or photosensitizers. Here, we discuss new SELEX strategies and stabilization methods as well as applications in drug delivery and molecular imaging.

Comparison of structure, function and regulation of plant cold shock domain proteins to bacterial and animal cold shock domain proteins

  • Chaikam, Vijay;Karlson, Dale T.
    • BMB Reports
    • /
    • v.43 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • The cold shock domain (CSD) is among the most ancient and well conserved nucleic acid binding domains from bacteria to higher animals and plants. The CSD facilitates binding to RNA, ssDNA and dsDNA and most functions attributed to cold shock domain proteins are mediated by this nucleic acid binding activity. In prokaryotes, cold shock domain proteins only contain a single CSD and are termed cold shock proteins (Csps). In animal model systems, various auxiliary domains are present in addition to the CSD and are commonly named Y-box proteins. Similar to animal CSPs, plant CSPs contain auxiliary C-terminal domains in addition to their N-terminal CSD. Cold shock domain proteins have been shown to play important roles in development and stress adaptation in wide variety of organisms. In this review, the structure, function and regulation of plant CSPs are compared and contrasted to the characteristics of bacterial and animal CSPs.

Development of Clamping Probe for Rare DNA Detection using Universal Primers

  • Kim, Meyong Il;Lee, Ki-Young;Cho, Sang-Man
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.3
    • /
    • pp.339-344
    • /
    • 2014
  • PCR amplification with universal primer is a useful tool for speciation of symbionts in marine eukaryote coupled with robust separation method such as denaturing high performance chromatography (DHPLC). To overcome the biased amplification, clamping PCR is recommended to suppress the amplification of host gene. In this study, we evaluated the efficiency of rare gene detection for two kinds of clamping probes which were successfully utilized for eukaryotic symbiont analysis: C3 linked nucleotide (C3) and peptide nucleic acid (PNA). PNA was 3-4 orders of magnitude higher than that of C3 tested in clamping efficiency and rare gene detection. This represented that PNA could be a more competent clamping probe for the enhancement of PCR amplification for rare symbiont genes.