Browse > Article
http://dx.doi.org/10.4062/biomolther.2013.085

Nucleic Acid Aptamers: New Methods for Selection, Stabilization, and Application in Biomedical Science  

Kong, Hoon Young (Department of Molecular Biology, Institute of Nanosensor and Biotechnology, Dankook University)
Byun, Jonghoe (Department of Molecular Biology, Institute of Nanosensor and Biotechnology, Dankook University)
Publication Information
Biomolecules & Therapeutics / v.21, no.6, 2013 , pp. 423-434 More about this Journal
Abstract
The adoption of oligonucleotide aptamer is well on the rise, serving an ever increasing demand for versatility in biomedical field. Through the SELEX (Systematic Evolution of Ligands by EXponential enrichment), aptamer that can bind to specific target with high affinity and specificity can be obtained. Aptamers are single-stranded nucleic acid molecules that can fold into complex three-dimensional structures, forming binding pockets and clefts for the specific recognition and tight binding of any given molecular target. Recently, aptamers have attracted much attention because they not only have all of the advantages of antibodies, but also have unique merits such as thermal stability, ease of synthesis, reversibility, and little immunogenicity. The advent of novel technologies is revolutionizing aptamer applications. Aptamers can be easily modified by various chemical reactions to introduce functional groups and/or nucleotide extensions. They can also be conjugated to therapeutic molecules such as drugs, drug containing carriers, toxins, or photosensitizers. Here, we discuss new SELEX strategies and stabilization methods as well as applications in drug delivery and molecular imaging.
Keywords
Aptamer; Stabilization; Modification; SELEX; Imaging; Drug delivery system;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Nolte, A., Klussmann, S., Bald, R., Erdmann, V. A. and Furste, J. P. (1996) Mirror-design of L-oligonucleotide ligands binding to L-arginine. Nat. Biotechnol. 14, 1116-1119.   DOI   ScienceOn
2 Pageau, S. C. (2009) Denosumab. MAbs 1, 210-5.   DOI
3 Park, S. M., Ahn, J. Y., Jo, M., Lee, D. K., Lis, J. T., Craighead, H. G. and Kim, S. (2009) Selection and elution of aptamers using nanoporous sol-gel arrays with integrated microheaters. Lab Chip 9, 1206-1212.   DOI   ScienceOn
4 Pastor, F., Soldevilla, M. M., Villanueva, H., Kolonias, D., Inoges, S., de Cerio, A. L., Kandzia, R., Klimyuk, V., Gleba, Y., Gilboa, E. and Bendandi, M. (2013) CD28 aptamers as powerful immune response modulators. Mol. Ther. Nucleic Acids 2, e98.   DOI   ScienceOn
5 Rockey, W. M., Huang, L., Kloepping, K. C., Baumhover, N. J., Giangrande, P. H. and Schultz, M. K. (2011) Synthesis and radiolabeling of chelator-RNA aptamer bioconjugates with copper-64 for targeted molecular imaging. Bioorg. Med. Chem. 19, 4080-4090.   DOI   ScienceOn
6 Romer, P. S., Berr, S., Avota, E., Na, S. Y., Battaglia, M., ten Berge, I., Einsele, H. and Hunig, T. (2011) Preculture of PBMCs at high cell density increases sensitivity of T-cell responses, revealing cytokine release by CD28 superagonist TGN1412. Blood 118, 6772-6782.   DOI
7 Ruckman, J., Green, L. S., Beeson, J., Waugh, S., Gillette, W. L., Henninger, D. D., Claesson-Welsh, L. and Janjic, N. (1998) 2'-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J. Biol. Chem. 273, 20556-20567.   DOI   ScienceOn
8 Savla, R., Taratula, O., Garbuzenko, O. and Minko, T. (2011) Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer. J. Control. Release 153, 16-22.   DOI   ScienceOn
9 Schmidt, K. S., Borkowski, S., Kurreck, J., Stephens, A. W., Bald, R., Hecht, M., Friebe, M., Dinkelborg, L. and Erdmann, V. A. (2004) Application of locked nucleic acids to improve aptamer in vivo stability and targeting function. Nucleic Acids Res. 32, 5757-5765.   DOI   ScienceOn
10 Schneider, D. J., Feigon, J., Hostomsky, Z. and Gold, L. (1995) Highaffi nity ssDNA inhibitors of the reverse transcriptase of type 1 human immunodefi ciency virus. Biochemistry 34, 9599-9610.   DOI   ScienceOn
11 Shi, H., Tang, Z., Kim, Y., Nie, H., Huang, Y. F., He, X., Deng, K., Wang, K. and Tan, W. (2010) in vivo fl uorescence imaging of tumors using molecular aptamers generated by cell-SELEX. Chem. Asian J. 5, 2209-2213.   DOI   ScienceOn
12 Shoji, A., Kuwahara, M., Ozaki, H. and Sawai, H. (2007) Modified DNA aptamer that binds the (R)-isomer of a thalidomide derivative with high enantioselectivity. J. Am. Chem. Soc. 129, 1456-1464.   DOI   ScienceOn
13 Siller-Matula, J. M., Merhi, Y., Tanguay, J. F., Duerschmied, D., Wagner, D. D., McGinness, K. E., Pendergrast, P. S., Chung, J. K., Tian, X., Schaub, R. G. and Jilma, B. (2012) ARC15105 is a potent antagonist of von Willebrand factor mediated platelet activation and adhesion. Arterioscler. Thromb. Vasc. Biol. 32, 902-909.   DOI
14 Song, Y., Zhu, Z., An, Y., Zhang, W., Zhang, H., Liu, D., Yu, C., Duan, W. and Yang, C. J. (2013) Selection of DNA aptamers against epithelial cell adhesion molecule for cancer cell imaging and circulating tumor cell capture. Anal. Chem. 85, 4141-4149.   DOI   ScienceOn
15 Subramanian, N., Raghunathan, V., Kanwar, J. R., Kanwar, R. K., Elchuri, S. V., Khetan, V. and Krishnakumar, S. (2012) Target-specific delivery of doxorubicin to retinoblastoma using epithelial cell adhesion molecule aptamer. Mol. Vis. 18, 2783-2795.
16 Suntharalingam, G., Perry, M. R., Ward, S., Brett, S. J., Castello-Cortes, A., Brunner, M. D. and Panoskaltsis, N. (2006) Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N. Engl. J. Med. 355, 1018-1028.   DOI   ScienceOn
17 Bagalkot, V., Farokhzad, O. C., Langer, R. and Jon, S. (2006) An aptamer-doxorubicin physical conjugate as a novel targeted drugdelivery platform. Angew. Chem. Int. Ed. Engl. 45, 8149-8152.   DOI   ScienceOn
18 Berezovski, M., Musheev, M., Drabovich, A. and Krylov, S. N. (2006) Non-SELEX selection of aptamers. J. Am. Chem. Soc. 128, 1410-1411.   DOI   ScienceOn
19 Andreola, M. L., Calmels, C., Michel, J., Toulme, J. J. and Litvak, S. (2000) Towards the selection of phosphorothioate aptamers:optimizing in vitro selection steps with phosphorothioate nucleotides. Eur. J. Biochem. 267, 5032-5040.   DOI   ScienceOn
20 Aravind, A., Jeyamohan, P., Nair, R., Veeranarayanan, S., Nagaoka, Y., Yoshida, Y., Maekawa, T. and Kumar, D. S. (2012) AS1411 aptamer tagged PLGA-lecithin-PEG nanoparticles for tumor cell targeting and drug delivery. Biotechnol. Bioeng. 109, 2920-2931.   DOI   ScienceOn
21 Banaszynski, M. and Kolesar, J. M. (2013) Vemurafenib and ipilimumab: New agents for metastatic melanoma. Am. J. Health Syst. Pharm. 70, 1205-1210.   DOI   ScienceOn
22 Barciszewski, J., Medgaard, M., Koch, T., Kurreck, J. and Ermann, V. A. (2009) Locked nucleic acid aptamers. Methods Mol. Biol. 535, 165-186.   DOI   ScienceOn
23 Tsien, R. Y. (2005) Building and breeding molecules to spy on cells and tumors. FEBS Lett. 579, 927-932.   DOI   ScienceOn
24 Talbot, L. J., Mi, Z., Bhattacharya, S. D., Kim, V., Guo, H. and Kuo, P. C. (2011) Pharmacokinetic characterization of an RNA aptamer against osteopontin and demonstration of in vivo effi cacy in reversing growth of human breast cancer cells. Surgery 150, 224-230.   DOI   ScienceOn
25 Tang, Z., Parekh, P., Turner, P., Moyer, R. W. and Tan, W. (2009) Generating aptamers for recognition of virus-infected cells. Clin. Chem. 55, 813-822.   DOI   ScienceOn
26 Tsai, C. H., Chen, J. and Szostak, J. W. (2007) Enzymatic synthesis of DNA on glycerol nucleic acid templates without stable duplex formation between product and template. Proc. Natl. Acad. Sci. USA 104, 14598-14603.   DOI   ScienceOn
27 Tuerk, C. and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505-510.   DOI
28 Vater, A., Sell, S., Kaczmarek, P., Maasch, C., Buchner, K., Pruszynska-Oszmalek, E., Kolodziejski, P., Purschke, W. G., Nowak, K. W., Strowski, M. Z. and Klussmann, S. (2013) A mixed mirror-image DNA/RNA aptamer inhibits glucagon and acutely improves glucose tolerance in models of type 1 and type 2 diabetes. J. Biol. Chem. 288, 21136-21147.   DOI   ScienceOn
29 Vaught, J. D., Bock, C., Carter, J., Fitzwater, T., Otis, M., Schneider, D., Rolando, J., Waugh, S., Wilcox, S. K. and Eaton, B. E. (2010) Expanding the chemistry of DNA for in vitro selection. J. Am. Chem. Soc. 132, 4141-4151.   DOI   ScienceOn
30 Veedu, R. N., Vester, B. and Wengel, J. (2009) Effi cient enzymatic synthesis of LNA-modified DNA duplexes using KOD DNA polymerase. Org. Biomol. Chem. 7, 1404-1409.   DOI   ScienceOn
31 Cai, W. and Chen, X. (2007) Nanoplatforms for targeted molecular imaging in living subjects. Small 3, 1840-1854.   DOI   ScienceOn
32 Berezovski, M., Drabovich, A., Krylova, S. M., Musheev, M., Okhonin, V., Petrov, A. and Krylov, S. N. (2005) Nonequilibrium capillary electrophoresis of equilibrium mixtures: a universal tool for development of aptamers. J. Am. Chem. Soc. 127, 3165-3171.   DOI   ScienceOn
33 Blank, M., Weinschenk, T., Priemer, M. and Schluesener, H. (2001) Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels. selective targeting of endothelial regulatory protein pigpen. J. Biol. Chem. 276, 16464-16468.   DOI   ScienceOn
34 Bruno, J. G., Carrillo, M. P., Phillips, T., Vail, N. K. and Hanson, D. (2008) Competitive FRET-aptamer-based detection of methylphosphonic acid, a common nerve agent metabolite. J. Fluoresc. 18, 867-876.   DOI
35 Chen, F., Hu, Y., Li, D., Chen, H. and Zhang, X. L. (2009) CS-SELEX generates high-affinity ssDNA aptamers as molecular probes for hepatitis C virus envelope glycoprotein E2. PLoS One 4, e8142   DOI   ScienceOn
36 Chu, T. C., Marks, J. W. 3rd, Lavery, L. A., Faulkner, S., Rosenblum, M. G., Ellington, A. D. and Levy, M. (2006a) Aptamer:toxin conjugates that specifically target prostate tumor cells. Cancer Res. 66, 5989-5992.   DOI   ScienceOn
37 Chu, T. C., Twu, K. Y., Ellington, A. D. and Levy, M. (2006b) Aptamer mediated siRNA delivery. Nucleic Acids Res. 34, e73   DOI   ScienceOn
38 Cox, J. C., Rudolph, P. and Ellington, A. D. (1998) Automated RNA selection. Biotechnol. Prog. 14, 845-850.   DOI   ScienceOn
39 Cui, Z. Q., Ren, Q., Wei, H. P., Chen, Z., Deng, J. Y., Zhang, Z. P. and Zhang, X. E. (2011) Quantum dot-aptamer nanoprobes for recognizing and labeling infl uenza A virus particles. Nanoscale. 3, 2454-2457.   DOI   ScienceOn
40 Wang, C. H., Huang, Y. F. and Yeh, C. K. (2011) Aptamer-conjugated nanobubbles for targeted ultrasound molecular imaging. Langmuir 27, 6971-6976.   DOI   ScienceOn
41 Wang, J., Jiang, H. and Liu, F. (2000) in vitro selection of novel RNA ligands that bind human cytomegalovirus and block viral infection. RNA 6, 571-583.   DOI   ScienceOn
42 White, R., Rusconi, C., Scardino, E., Wolberg, A., Lawson, J., Hoffman, M. and Sullenger, B. (2001) Generation of species crossreactive aptamers using "toggle" SELEX. Mol. Ther. 4, 567-573.   DOI   ScienceOn
43 Williams, K. P., Liu, X. H., Schumacher, T. N., Lin, H. Y., Ausiello, D. A., Kim, P. S. and Bartel, D. P. (1997) Bioactive and nuclease-resistant L-DNA ligand of vasopressin. Proc. Natl. Acad. Sci. U.S.A. 94, 11285-11290.   DOI
44 Wittung, P., Nielsen, P. E., Buchardt, O., Egholm, M. and Norden, B. (1994) DNA-like double helix formed by peptide nucleic acid. Nature 368, 561-563.   DOI   ScienceOn
45 Wullner, U., Neef, I., Eller, A., Kleines, M., Tur, M. K. and Barth, S. (2008) Cell-specific induction of apoptosis by rationally designed bivalent aptamer-siRNA transcripts silencing eukaryotic elongation factor 2. Curr. Cancer Drug Targets 8, 554-565.   DOI   ScienceOn
46 Xu, W. and Lu, Y. (2011) A smart magnetic resonance imaging contrast agent responsive to adenosine based on a DNA aptamer-conjugated gadolinium complex. Chem. Commun. 47, 4998-5000.   DOI   ScienceOn
47 Yang, X., Fennewald, S., Luxon, B. A., Aronson, J., Herzog, N. K. and Gorenstein, D. G. (1999) Aptamers containing thymidine 3'-Ophosphorodithioates: synthesis and binding to nuclear factor-${\kappa}$B. Bioorg. Med. Chem. Lett. 9, 3357-3362.   DOI   ScienceOn
48 Yang, X., Huang, J., Wang, K., Li, W., Cui, L. and Li, X. (2011) Angiogenin-mediated photosensitizer-aptamer conjugate for photodynamic therapy. ChemMedChem 6, 1788-1780.
49 Dollins, C. M., Nair, S., Boczkowski, D., Lee, J., Layzer, J. M., Gilboa, E. and Sullenger, B. A. (2008) Assembling OX40 aptamers on a molecular scaffold to create a receptor-activating aptamer. Chem. Biol. 15, 675-682.   DOI   ScienceOn
50 Diener, J. L., Daniel Lagasse, H. A., Duerschmied, D., Merhi, Y., Tanguay, J. F., Hutabarat, R., Gilbert, J., Wagner, D. D. and Schaub, R. (2009) Inhibition of von Willebrand factor-mediated platelet activation and thrombosis by the anti-von Willebrand factor A1-domain aptamer ARC1779. J. Thromb. Haemost. 7, 1155-1162.   DOI   ScienceOn
51 Ellington, A. D. and Szostak, J. W. (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818-822.   DOI   ScienceOn
52 Eyetech Study Group. (2002) Preclinical and phase 1A clinical evaluation of an anti-vegf pegylated aptamer (Eye001) for the treatment of exudative age-related macular degeneration. Retina. 22, 143-152.   DOI
53 Floege, J., Ostendorf, T., Janssen, U., Burg, M., Radeke, H. H., Vargeese, C., Gill, S. C., Green, L. S. and Janjic, N. (1999) Novel approach to specific growth factor inhibition in vivo: antagonism of platelet-derived growth factor in glomerulonephritis by aptamers. Am. J. Pathol. 154, 169-179.   DOI   ScienceOn
54 Foy, J. W., Rittenhouse, K., Modi, M. and Patel, M. (2007) Local tolerance and systemic safety of pegaptanib sodium in the dog and rabbit. J. Ocul. Pharmacol. Ther. 23, 452-466.   DOI   ScienceOn
55 Gilboa, E., McNamara, J. 2nd and Pastor, F. (2013) Use of oligonucleotide aptamer ligands to modulate the function of immune receptors. Clin. Cancer Res. 19, 1054-1062.   DOI   ScienceOn
56 Gissel, M., Orfeo, T., Foley, J. H. and Butenas, S. (2012) Effect of BAX499 aptamer on tissue factor pathway inhibitor function and thrombin generation in models of hemophilia. Thromb. Res. 130, 948-955.   DOI   ScienceOn
57 Zhang, Y., Hong, H. and Cai W. (2011) Tumor-targeted drug delivery with aptamers. Curr. Med. Chem. 18, 4185-4194.   DOI   ScienceOn
58 Yigit, M. V., Mazumdar, D., Kim, H. K., Lee, J. H., Odintsov, B. and Lu, Y. (2007) Smart "turn-on" magnetic resonance contrast agents based on aptamer-functionalized superparamagnetic iron oxide nanoparticles. Chembiochem 8, 1675-1678.   DOI   ScienceOn
59 Zhang, C., Ji, X., Zhang, Y., Zhou, G., Ke, X., Wang, H., Tinnefeld, P. and He, Z. (2013) One-pot synthesized aptamer-functionalized CdTe:$Zn^{2+}$ quantum dots for tumor-targeted fl uorescence imaging in vitro and in vivo. Anal. Chem. 85, 5843-5849.   DOI   ScienceOn
60 Zhang, M. Z., Yu, R. N., Chen, J., Ma, Z. Y. and Zhao, Y. D. (2012) Targeted quantum dots fluorescence probes functionalized with aptamer and peptide for transferrin receptor on tumor cells. Nanotechnology 23, 485104.   DOI   ScienceOn
61 Zhou, B. and Wang, B. (2006) Pegaptanib for the treatment of agerelated macular degeneration. Exp. Eye Res. 83, 615-619.   DOI   ScienceOn
62 Zhou, J., Li, H., Li, S., Zaia, J. and Rossi, J. J. (2008) Novel dual inhibitory function aptamer-siRNA delivery system for HIV-1 therapy. Mol. Ther. 16, 1481-1489.   DOI   ScienceOn
63 Zhou, J., Li, H., Zhang, J., Piotr, S. and Rossi J. (2011a) Development of cell-type specific anti-HIV gp120 aptamers for siRNA delivery. J. Vis. Exp. 23, 2954.
64 Zhou, J., Neff, C. P., Swiderski, P., Li, H., Smith, D. D., Aboellail, T., Remling-Mulder, L., Akkina, R. and Rossi, J. J. (2013) Functional in vivo delivery of multiplexed anti-HIV-1 siRNAs via a chemically synthesized aptamer with a sticky bridge. Mol. Ther. 21, 192-200.   DOI   ScienceOn
65 Healy, J. M., Lewis, S. D., Kurz, M., Boomer, R. M., Thompson, K. M., Wilson, C. and McCauley, T. G. (2004) Pharmacokinetics and biodistribution of novel aptamer compositions. Pharm. Res. 21, 2234-2246.   DOI
66 Gudima, S.O., Kostyuk, D. A., Grishchenko, O. I., Tunitskaya, V. L., Memelova, L. V. and Kochetkov, S. N. (1998) Synthesis of mixed ribo/deoxyribopolynucleotides by mutant T7 RNA polymerase. FEBS Lett. 439, 302-306.   DOI   ScienceOn
67 Hamula, C. L., Le, X. C. and Li, X. F. (2011) DNA aptamers binding to multiple prevalent M-types of Streptococcus pyogenes. Anal. Chem. 83, 3640-3647.   DOI   ScienceOn
68 Han, D., Zhu, G., Wu, C., Zhu, Z., Chen, T., Zhang, X. and Tan, W. (2013) Engineering a cell-surface aptamer circuit for targeted and amplified photodynamic cancer therapy. ACS Nano 7, 2312-2319.   DOI   ScienceOn
69 Hicke, B. J., Stephens, A. W., Gould, T., Chang, Y. F., Lynott, C. K., Heil, J., Borkowski, S., Hilger, C. S., Cook, G., Warren, S. and Schmidt, P. G. (2006) Tumor targeting by an aptamer. J. Nucl. Med. 47, 668-678.
70 Holahan, M. R., Madularu, D., McConnell, E. M., Walsh, R. and DeRosa, M. C. (2011) Intra-accumbens injection of a dopamine aptamer abates MK-801-induced cognitive dysfunction in a model of schizophrenia. PLoS One 6, e22239.   DOI
71 Holland, C. A., Henry, A. T., Whinna, H. C. and Church, F. C. (2000) Effect of oligodeoxynucleotide thrombin aptamer on thrombin inhibition by heparin cofactor II and antithrombin. FEBS Lett. 484, 87-91.   DOI   ScienceOn
72 Hong, H., Goel, S., Zhang, Y. and Cai, W. (2011) Molecular imaging with nucleic acid aptamers. Curr. Med. Chem. 18, 4195-4205.   DOI
73 Hooks, M. A., Wade, C. S. and Millikan, W. J. (1991) Muromonab CD-3: a review of its pharmacology, pharmacokinetics, and clinical use in transplantation. Pharmacotherapy 11, 26-37.
74 Hussain, A. F., Tur, M. K. and Barth, S. (2013) An aptamer-siRNA chimera silences the eukaryotic elongation factor 2 gene and induces apoptosis in cancers expressing ${\alpha}$v${\beta}$3 integrin. Nucleic Acid Ther. 23, 203-212.   DOI
75 Zhou, J., Shu, Y., Guo, P., Smith, D. D. and Rossi, J. J. (2011b) Dual functional RNA nanoparticles containing phi29 motor pRNA and anti-gp120 aptamer for cell-type specific delivery and HIV-1 inhibition. Methods 54, 284-294.   DOI   ScienceOn
76 Zhu, G., Ye, M., Donovan, M. J., Song, E., Zhao, Z. and Tan, W. (2012A) Nucleic acid aptamers: an emerging frontier in cancer therapy. Chem. Commun. (Camb) 48, 10472-10480.   DOI   ScienceOn
77 Zhu, Q., Shibata, T., Kabashima, T. and Kai, M. (2012B) Inhibition of HIV-1 protease expression in T cells owing to DNA aptamer-mediated specific delivery of siRNA. Eur. J. Med. Chem. 56, 396-399.   DOI   ScienceOn
78 Horhota, A., Zou, K., Ichida, J. K., Yu, B., McLaughlin, L. W., Szostak, J. W. and Chaput, J. C. (2005) Kinetic analysis of an efficient DNAdependent TNA polymerase. J. Am. Chem. Soc. 127, 7427-7434.   DOI   ScienceOn
79 Huang, Y. F., Shangguan, D., Liu, H., Phillips, J. A., Zhang, X., Chen, Y. and Tan, W. (2009) Molecular assembly of an aptamer-drug conjugate for targeted drug delivery to tumor cells. Chembiochem. 10, 862-868.   DOI   ScienceOn
80 Hwang do, W., Ko, H. Y., Lee, J. H., Kang, H., Ryu, S. H., Song, I. C., Lee, D. S. and Kim, S. (2010) A nucleolin-targeted multimodal nanoparticle imaging probe for tracking cancer cells using an aptamer. J. Nucl. Med. 51, 98-105.   DOI
81 Hybarger, G., Bynum, J., Williams, R. F., Valdes, J. J. and Chambers, J. P. (2006) A microfl uidic SELEX prototype. Anal. Bioanal. Chem. 384, 191-198.   DOI
82 Ichida, J. K., Zou, K., Horhota, A., Yu, B., McLaughlin, L. W. and Szostak, J. W. (2005) An in vitro selection system for TNA. J. Am. Chem. Soc. 127, 2802-2803.   DOI   ScienceOn
83 Jayasena, S. D. (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 45, 1628-1650.
84 Jenison, R. D., Gill, S. C., Pardi, A. and Polisky, B. (1994) High-resolution molecular discrimination by RNA. Science 263, 1425-1429.   DOI
85 Kasahara, Y. and Kuwahara, M. (2012) Artifi cial specific binders directly recovered from chemically modified nucleic Acid libraries. J. Nucleic Acids 2012, 156482.
86 Kim, D., Jeong, Y. Y. and Jon, S. (2010) A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 4, 3689-3696.   DOI   ScienceOn
87 Kasahara, Y., Irisawa, Y., Ozaki, H., Obika, S. and Kuwahara, M. (2013) 2',4'-BNA/LNA aptamers: CE-SELEX using a DNA-based library of full-length 2'-O, 4'-C-methylene-bridged/linked bicyclic ribonucleotides. Bioorg. Med. Chem. Lett. 23, 1288-1292.   DOI   ScienceOn
88 Kawakami, J., Imanaka, H., Yokota, Y. and Sugimoto, N. (2000) in vitro selection of aptamers that act with $Zn^{2+}$. J. Inorg. Biochem. 82, 197-206.   DOI   ScienceOn
89 Kempeneers, V., Renders, M., Froeyen, M. and Herdewijn, P. (2005) Investigation of the DNA-dependent cyclohexenyl nucleic acid polymerization and the cyclohexenyl nucleic acid-dependent DNA polymerization. Nucleic Acids Res. 33, 3828-3836.   DOI   ScienceOn
90 Kim, S., Kim, Y., Kim, P., Ha, J., Kim, K., Sohn, M., Yoo, J. S., Lee, J., Kwon, J. A. and Lee, K. N. (2006) Improved sensitivity and physical properties of sol-gel protein chips using large-scale material screening and selection. Anal. Chem. 78, 7392-7396.   DOI   ScienceOn
91 Klussmann, S., Nolte, A., Bald, R., Erdmann, V. A. and Furste, J. P. (1996) Mirror-image RNA that binds D-adenosine. Nat. Biotechnol. 14, 1112-1115.   DOI   ScienceOn
92 Knight, D. M., Trinh, H., Le, J., Siegel, S., Shealy, D., McDonough, M., Scallon, B., Moore, M. A., Vilcek, J. and Daddona, P. (1993) Construction and initial characterization of a mouse-human chimeric anti-TNF antibody. Mol. Immunol. 30, 1443-1453.   DOI   ScienceOn
93 Kolesnikova, O., Kazakova, H., Comte, C., Steinberg, S., Kamenski, P., Martin, R. P., Tarassov, I. and Entelis, N. (2010) Selection of RNA aptamers imported into yeast and human mitochondria. RNA 16, 926-941.   DOI   ScienceOn
94 Kuwahara, M., Takeshima, H., Nagashima, J., Minezaki, S., Ozaki, H. and Sawai, H. (2009) Transcription and reverse transcription of artifi cial nucleic acids involving backbone modifi cation by template directed DNA polymerase reactions. Bioorg. Med. Chem. 17, 3782-3788.   DOI   ScienceOn
95 Kuwahara, M., Obika, S., Nagashima, J., Ohta, Y., Suto, Y., Ozaki, H., Sawai, H. and Imanishi, T. (2008) Systematic analysis of enzymatic DNA polymerization using oligo-DNA templates and triphosphate analogs involving 2',4'-bridged nucleosides. Nucleic Acids Res. 36, 4257-4265.   DOI   ScienceOn
96 Kuwahara, M., Takahata, Y., Shoji, A., Ozaki, A. N., Ozaki, H. and Sawai, H. (2003) Substrate properties of C5-substituted pyrimidine 2'-deoxynucleoside 5'-triphosphates for thermostable DNA polymerases during PCR. Bioorg. Med. Chem. Lett. 13, 3735-3738.   DOI   ScienceOn
97 Kuwahara, M., Takano, Y., Kasahara, Y., Nara, H., Ozaki, H., Sawai, H., Sugiyama, A. and Obika, S. (2010) Study on suitability of KOD dna polymerase for enzymatic production of artifi cial nucleic acids using base/sugar modified nucleoside triphosphates. Molecules 15, 8229-8240.   DOI   ScienceOn
98 Latham, J. A., Johnson, R. and Toole, J. J. (1994) The application of a modified nucleotide in aptamer selection: novel thrombin aptamers containing 5-(1-pentynyl)-2'-deoxyuridine. Nucleic Acids Res. 22, 2817-2822.   DOI   ScienceOn
99 Lato, S. M., Ozerova, N. D., He, K. , Sergueeva, Z., Shaw, B. R. and Burke, D. H. (2002) Boron-containing aptamers to ATP. Nucleic Acids Res. 30, 1401-1407.   DOI   ScienceOn
100 Lauhon, C. T. and Szostak, J. W. (1995) RNA aptamers that bind flavin and nicotinamide redox cofactors. J. Am. Chem. Soc. 117, 1246-1257.   DOI   ScienceOn
101 Leal, N. A., Sukeda, M. and Benner, S. A. (2006) Dynamic assembly of primers on nucleic acid templates. Nucleic Acids Res. 34, 4702-4710.   DOI   ScienceOn
102 Liu, Z., Duan, J. H., Song, Y. M., Ma, J., Wang, F. D., Lu, X., Yang and X. D. (2012) Novel HER2 aptamer selectively delivers cytotoxic drug to HER2-positive breast cancer cells in vitro. J. Transl. Med. 10, 148.   DOI
103 Leva, S., Lichte, A., Burmeister, J., Muhn, P., Jahnke, B., Fesser, D., Erfurth, J., Burgstaller, P. and Klussmann, S. (2002) GnRH binding RNA and DNA Spiegelmers: a novel approach toward GnRH antagonism. Chem. Biol. 9, 351-359.   DOI   ScienceOn
104 Li, F., Du, Z., Yang, L. and Tang, B. (2013) Selective and sensitive turnon detection of adenosine triphosphate and thrombin based on bifunctional fl uorescent oligonucleotide probe. Biosens. Bioelectron. 41, 907-910.   DOI   ScienceOn
105 Li, M., Lin, N., Huang, Z., Du, L., Altier, C., Fang, H. and Wang, B. (2008) Selecting aptamers for a glycoprotein through the incorporation of the boronic acid moiety. J. Am. Chem. Soc. 130, 12636-12638.   DOI   ScienceOn
106 Lou, X., Qian, J., Xiao, Y., Viel, L., Gerdon, A. E., Lagally, E. T., Atzberger, P., Tarasow, T. M., Heeger, A. J. and Soh, H. T. (2009) Micromagnetic selection of aptamers in microfl uidic channels. Proc. Natl. Acad. Sci. U.S.A 106, 2989-2994.   DOI   ScienceOn
107 Mann, A. P., Bhavane, R. C., Somasunderam, A., Liz Montalvo-Ortiz, B., Ghaghada, K. B., Volk, D., Nieves-Alicea, R., Suh, K. S., Ferrari, M., Annapragada, A., Gorenstein, D. G. and Tanaka, T. (2011) Thioaptamer conjugated liposomes for tumor vasculature targeting. Oncotarget 2, 298-304.
108 Mann, D., Reinemann, C., Stoltenburg, R. and Strehlitz, B. (2005) in vitro selection of DNA aptamers binding ethanolamine. Biochem. Biophys. Res. Commun. 338, 1928-1934.   DOI   ScienceOn
109 Maul, T. M., Dudgeon, D. D., Beste, M. T., Hammer, D. A., Lazo, J. S., Villanueva, F. S. and Wagner, W. R. (2010) Optimization of ultrasound contrast agents with computational models to improve selection of ligands and binding strength. Biotechnol. Bioeng. 107, 854-864.   DOI   ScienceOn
110 Mazumdar, S. and Greenwald, D. (2009) Golimumab. MAbs 1, 422-431.   DOI
111 McIntyre, J. O. and Matrisian, L. M. (2003) Molecular imaging of proteolytic activity in cancer. J. Cell. Biochem. 90, 1087-1097.   DOI   ScienceOn
112 McNamara, J. O. 2nd, Andrechek, E. R., Wang, Y., Viles, K. D., Rempel, R. E., Gilboa, E., Sullenger, B. A. and Giangrande, P. H. (2006) Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat. Biotechnol. 24, 1005-1015.   DOI   ScienceOn
113 McNamara, J. O., Kolonias, D., Pastor, F., Mittler, R. S., Chen, L., Giangrande, P. H., Sullenger, B. and Gilboa, E. (2008) Multivalent 4-1BB binding aptamers costimulate CD8+ T cells and inhibit tumor growth in mice. J. Clin. Invest. 118, 376-386.   DOI   ScienceOn
114 Meng, L., Yang, L., Zhao, X., Zhang, L., Zhu, H., Liu, C. and Tan, W. (2012) Targeted delivery of chemotherapy agents using a liver cancer-specific aptamer. PLoS One 7, e33434.   DOI
115 Mi, J., Liu, Y., Rabbani, Z. N., Yang, Z., Urban, J. H., Sullenger, B. A. and Clary, B. M. (2010) in vivo selection of tumor-targeting RNA motifs. Nat. Chem. Biol. 6, 22-24.   DOI   ScienceOn
116 Mosing, R. K., Mendonsa, S. D. and Bowser, M. T. (2005) Capillary electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase. Anal. Chem. 77, 6107-6112.   DOI   ScienceOn
117 Neff, C. P., Zhou, J., Remling, L., Kuruvilla, J., Zhang, J., Li, H., Smith, D. D., Swiderski, P., Rossi, J. J. and Akkina, R. (2011) An aptamersiRNA chimera suppresses HIV-1 viral loads and protects from helper CD4(+) T cell decline in humanized mice. Sci. Transl. Med. 3, 66ra6.
118 Nitsche, A., Kurth, A., Dunkhorst, A., Panke, O., Sielaff, H., Junge, W., Muth, D., Scheller, F., Stocklein, W., Dahmen, C., Pauli, G. and Kage, A. (2007) One-step selection of Vaccinia virus-binding DNA aptamers by MonoLEX. BMC Biotechnol. 7, 48.   DOI