• 제목/요약/키워드: Nucleation and growth

검색결과 518건 처리시간 0.032초

상호 확산 반응 중의 생성상 제어 (Product Phase Control During Interdiffusion Reactions)

  • 박준식;김지훈
    • 한국주조공학회지
    • /
    • 제26권1호
    • /
    • pp.27-33
    • /
    • 2006
  • Phase evolutions involving nucleation stages together with diffusional growth have been examined in order to provide a guideline for determining rate limiting stages during phase evolutions. In multiphase materials systems in coatings, composites or multilayered structures, diffusion treatments often result in the development of metastable/intermediate phases at the reaction interfaces. The development of metastable phases during solid state interdiffusion demonstrates that the nucleation reaction can be one controlling factor. Also, the concentration gradient and the relative magnitudes of the component diffusivities provide a basis for a phase selection and the application of a kinetic bias strategy in the phase selection. For multicomponent alloy systems, the identification of the operative diffusion pathway is central to control phase formation. Experimental access to the nucleation and growth stage is discussed in thin film multi layers and bulk samples.

아세틸렌/공기 비예혼합 난류 제트화염의 Soot 생성에 대한 수치해석 (Numerical Analysis for the Soot Formation Processes in Acetylene-Air Nonpremixed Turbulent Jet Flame)

  • 김후중;김용모;윤명원
    • 한국자동차공학회논문집
    • /
    • 제10권6호
    • /
    • pp.80-89
    • /
    • 2002
  • The flame structure and soot formation in Acetylene-Air nonpremixed jet flame are numerically analyzed. We employed two variable approach to investigate the soot formation and oxidation processes. The present soot reaction mechanism involves nucleation, surface growth, particle coagulation, and oxidation steps. The gas phase chemistry and the soot nucleation, surface growth reactions are coupled by assuming that the nucleation and soot mass growth has the certain relationship with the concentration of pyrene and acetylene. We also employed laminar flamelet model to calculate the thermo-chemical properties and the proper soot source terms from the information of detailed chemical kinetic model. The numerical and physical model used in this study successfully predict the essential features of the combustion processes and soot formation characteristics in the reaction flow field.

Nucleation, Growth and Properties of $sp^3$ Carbon Films Prepared by Direct $C^-$ Ion Beam Deposition

  • Kim, Seong I.
    • The Korean Journal of Ceramics
    • /
    • 제3권3호
    • /
    • pp.173-176
    • /
    • 1997
  • Direct metal ion beam deposition is considered to be a whole new thin film deposition technique. Unlike other conventional thin film deposition processes, the individual deposition particles carry its own ion beam energies which are directly coupled for the formation of this films. Due to the nature of ion beams, the energies can be controlled precisely and eventually can be tuned for optimizing the process. SKION's negative C- ion beam source is used to investigate the initial nucleation mechanism and growth. Strong C- ion beam energy dependence has been observed. Complete phase control of sp3 and sp3, control of the C/SiC/Si interface layer, control of crystalline and amorphous mode growth, and optimization of the physical properties for corresponding applications can be achieved.

  • PDF

Electrochemical Behavior of Nanostructured Fe-Pd Alloy During Electrodeposition on Different Substrates

  • Rezaei, Milad;Haghshenas, Davoud F.;Ghorbani, Mohammad;Dolati, Abolghasem
    • Journal of Electrochemical Science and Technology
    • /
    • 제9권3호
    • /
    • pp.202-211
    • /
    • 2018
  • In this work, Fe-Pd alloy films have been electrodeposited on different substrates using an electrolyte containing $[Pd(NH_3)_4]^{2+}$ (0.02 M) and $[Fe-Citrate]^{2+}$ (0.2 M). The influences of substrate and overpotential on chemical composition, nucleation and growth kinetics as well as the electrodeposited films morphology have been investigated using energy dispersive X-ray spectroscopy (EDS), current-time transients, scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) patterns. In all substrates - brass, copper and sputtered fluorine doped tin oxide on glass (FTO/glass) - Fe content of the electrodeposited alloys increases by increasing the overpotential. Also the cathodic current efficiency is low due to high rate of $H_2$ co-reduction. Regarding the chronoamperometry current-time transients, it has been demonstrated that the nucleation mechanism is instantaneous with a typical three dimensional (3D) diffusion-controlled growth in the case of brass and copper substrates; while for FTO, the growth mode changes to 3D progressive. At a constant overpotential, the calculated number of active nucleation sites for metallic substrates is much higher than that of FTO/glass; however by increasing the overpotential, the number of active nucleation sites increases. The SEM micrographs as well as the XRD patterns reveal the formation of Fe-Pd alloy thin films with nanostructure arrangement and ultra-fine grains.

Suppression of the surface nucleation of YBa$_2$Cu$_3$O$_7-y$ by CeO$_2$ coating of the top-seeded melt processed YBCO superconductors

  • Kim, Ho-Jin;Jun, Byung-Hyuk;Kim, Chan-Joong
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권3호
    • /
    • pp.1-5
    • /
    • 2003
  • The effect of CeO$_2$ coating on the surface nucleation of the top-seeded melt-growth processed YBCO superconductors was studied. It was effective that the coating of Y123 compact surfaces by CeO$_2$ powder suppressed the undesirable subsidiary YBa$_2$Cu$_3$O$_{7-y}$ (Y123) nucleation during melt processing. BaCeO$_3$ was formed in the CeO$_2$-coated layers, which might cause a CuO-excessive liquid at the partial melt stage of $Y_2$BaCuO$_{5}$(Y211) plus liquid, and thus the Y123 nucleation at the YBCO compact surfaces could be suppressed during the melt growth of Y123 grain. In addition, the CeO$_2$ refined the Y211 particles near the compact / coating interface. While the levitation forces of the top surfaces with and without CeO$_2$ coating were similar to each other, the levitation force of the interior of the CeO$_2$ coated sample was higher than that of the interior of the sample without CeO$_2$ coating, which was attributed to the suppression of subsidiary Y123 nucleation at the compact walls.s.s.

Nucleation and Growth of b-Axis Oriented $PrBa_2Cu_3O_{7-x}$ Thin Films on $LaSrGaO_4$ (100) Substrates

  • Sung, Gun-Yong;Suh, Jeong-Dae
    • ETRI Journal
    • /
    • 제18권4호
    • /
    • pp.339-346
    • /
    • 1997
  • Good quality a-axis oriented thin films of $YBa_2Cu_3O_{7-x}$ may be grown by the use of a $PrBa_2Cu_3O_{7-x}$ (PBCO) layer as a template. Here we present a detailed study of the nucleation of the PBCO layer, explaining the orientations observed. It is determined that the wavy surface of a $LaSrGaO_4$ (LSGO) (100) substrate consists of the {101} planes by observing cross-sectional transmission electron microscopy images of the interface between the PBCO film and the substrate. The images and selected area diffraction patterns show that a mixed c-and b-axis oriented PBCO layer was initially grown on the substrate, followed by pure b-axis oriented PBCO growth. We explain that the c-axis oriented growth is the result of the growth of the PBCO (019) planes on the LSGO (101) planes. We conclude that the nucleation and growth of the PBCO films at the initial stages depends on the crystallographic plane of the substrate surfaces, however, as the film grows further, the kinetics of the deposition process favors b-axis oriented growth.

  • PDF

Coarsening Effects on the Formation of Microporous Membranes

  • Song, Seung-Won
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1995년도 춘계 총회 및 학술발표회
    • /
    • pp.1-4
    • /
    • 1995
  • The microstructure of polymer membranes produced via thermally induced phase separation (TIPS) of polymer solutions is a strong function of both the early-stage (by spinodal decomposition or nucleation & growth) and the late-stage phase separation (referred to in general as coarsening). In the case of early stage effects, the membrane morphology resulting from a nucleation & growth mechanism is either a poorly interconnecsed, stringy, beady structure which is mechanically fragile or a well interconnected structure with highly nonuniform pore sizes. In contrast, spinodal decomposition results in a well interconnected, mechanically strong membrane with highly uniform pore sizes. Here I describe recent quantitative studies of the coarsening effects on the microstructure of membranes produced via TIPS process. The dependence of microstructure on coarsening time, quench depth, solution viscosity, and polymer molecular weight was investigated in order to distinguish among three possible coarsening mechanisms, Ostwald ripening, coalescence, and hydrodynamic flow, which may be responsible for structural evolution after the early-stage phase Separation (spinodal decomposition or nucleation & growth).

  • PDF

Nucleation Layer의 표면 거칠기가 GaAs 기판 위에 성장된 InP 에피층의 품질에 미치는 영향 (Effects of Nucleation Layer's Surface Roughness on the Quality of InP Epitaxial Layer Grown on GaAs Substrates)

  • 유충현
    • 한국전기전자재료학회논문지
    • /
    • 제25권8호
    • /
    • pp.575-579
    • /
    • 2012
  • Heteroepitaxial InP films have been grown on GaAs substrates to study the effects of the nucleation layer's surface roughness on the epitaxial layer's quality. For this, InP nucleation layers were grown at $400^{\circ}C$ with various ethyldimethylindium (EDMIn) flow rates and durations of growth, annealed at $6200^{\circ}C$ for 10 minutes and then InP epitaxial layers were grown at $550^{\circ}C$. It has been found that the nucleation layer's surface roughness is a critical factor on the epitaxial layer's quality. When a nucleation layer is grown with an EDMIn flow rate of 2.3 ${\mu}mole/min$ for 12 minutes, the surface roughness of the nucleation layer is minimum and the successively grown epitaxial layer's qualities are comparable to those of the homoepitaxial InP layers reported. The minimum full width at half maximum of InP (200) x-ray diffraction peak and that of near-band-edge peak from a 4.4 K photoluminescence are 60 arcmin and 6.33 meV, respectively.

합금응고시 주상정으로부터 등축정 수지상으로의 천이에 관한 해석 (The analysis of columnar to equiaxed dendritic transition during alloy solidification)

  • 김신우
    • 한국결정성장학회지
    • /
    • 제8권1호
    • /
    • pp.187-192
    • /
    • 1998
  • 일반적으로 재료의 응고조직은 주상정과 등축정 수지상 영역으로 이루어지는데 이것은 제품의 기계적, 물리적 성질과 밀접한 관계를 가지기 때문에 주상정-등축정 천이에 관한 많은 이론적 연구가 행하여지고 있다. 본 연구에서는 J.D. Hunt에 의하여 일방향응고시 주상정앞에서의 핵생성과 결정성장조건을 이용하여 구하여진 해석학적 주상정-등축정 조건식을 바탕으로 응고속도에 따라 변하는 분배계수와 액상선기울기를 적용하여 수정된 조건식을 구하였다. 그리고 Al-Cu합금에 대하여 응고변수인 핵생성수, 핵생성온도, 합금의 조성, 응고속도 온도기울기에 따른 천이현상의 변화를 조사하였다.

  • PDF

미세패턴용 구리도금시 초기 전착 거동 해석 (Analysis of Initial Stage of Copper Electrodeposition for Fine Pattern)

  • 조차제;최창희;김상겸;박대희
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권4호
    • /
    • pp.164-168
    • /
    • 2003
  • The initial stage of copper electrodeposition has been known to be very important role for morphology and physical properties after final growth. The factors affecting the nucleation are electrode, current density, electrolyte and temperature. Current studies has illuminated the initial nucleation of copper electrodeposition in the viewpoint of the surface status of electrode and analyzed using EIS and SEM observation