• Title/Summary/Keyword: Nucleation and growth

검색결과 518건 처리시간 0.028초

Nucleation and Growth of Diamond in High Pressure

  • Choi, Jun-Youp;Park, Jong-Ku;Kang, Suk-Joong L.;Kwang, Yong-Eun
    • The Korean Journal of Ceramics
    • /
    • 제2권4호
    • /
    • pp.221-225
    • /
    • 1996
  • In diamond synthesis by metal film growth method under high pressure and high temperature, the nucleation and growth of diamond was observed dependent on the carbon source variation from graphite powder to the heat treated powders of lamp black carbon. At the low driving force condition near equilibrium pressure and temperature line, nucleation of diamond did not occur but growth of seed diamond appeared in the synthesis from lamp black carbon while both nucleation and growth of diamond took place in the synthesis from graphite. Growth morphology change of diamond occurred from cubo-octahedron to octahedron in the synthesis from graphite but very irregular growth of seed diamond occurred in the synthesis from lamp block carbon. Lamp black carbon transformed to recrystallized graphite first and very nucleation of diamond was observed on the recrystallized graphite surface. Growth morphology of diamond on the recrystallized graphite was clear cubo-octahedron even at higher pressure departure condition from equilibrium pressure and temperature line.

  • PDF

Nucleation kinetics and technology design for crystal growth from aqueous solution

  • Kidyarov, B.I.
    • 한국결정성장학회지
    • /
    • 제13권2호
    • /
    • pp.51-55
    • /
    • 2003
  • The interrelation into nucleation and thermodynamic parameters of solutions has been established by plotting of various dependencies: the enthalpy of dissolution, solubility product and super-solubility on ionic salt radii and also the extent of deviation from an ideal Debye -Huckel model of electrolyte solution on solubility product. The possible methods of perfect crystal growth from aqueous solution have been found a priori by separating of known set of pair values of solubility and super-solubility into no less than six-nine characteristic and distinctive sub-sets.

통계적 방법을 이용한 복합조직강의 변형률과 보이드 성장거동에 관한 연구 (A Study on Strain-Void Growth Mechanism of Dual Phase Steel by Statistical Method)

  • 오경훈;유용석;오택열
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.533-538
    • /
    • 2000
  • Ductile fracture of dual phase steel begins with void nucleation, at martensite-ferrite interface of deformed martensite particle. In this study, void nucleation, growth, and coalescence under various strain were studied in dual phase steel. Therefore, by means of the heat treatment of low carbon steel, the study deals with void nucleation and growth for ferrite grain size and martensite volume fraction of dual phase steel using statistical method. Void nucleation and growth with increasing strain are shown depend upon the ferrite grain size. Voids volume fraction generally increase as ferrite grain size decease.

  • PDF

Growth features and nucleation mechanism of Ga1-x-yInxAlyN material system on GaN substrate

  • Simonyan, Arpine K.;Gambaryan, Karen M.;Aroutiounian, Vladimir M.
    • Advances in nano research
    • /
    • 제5권4호
    • /
    • pp.303-311
    • /
    • 2017
  • The continuum elasticity model is applied to investigate quantitatively the growth features and nucleation mechanism of quantum dots, nanopits, and joint QDs-nanopits structures in GaInAlN quasyternary systems. We have shown that for GaInAlN material system at the critical strain of ${\varepsilon}^*=0.039$ the sign of critical energy and volume is changed. We assume that at ${\varepsilon}={\varepsilon}^*$ the mechanism of the nucleation is changed from the growth of quantum dots to the nucleation of nanopits. Obviously, at small misfit (${\varepsilon}$ < ${\varepsilon}^*$), the bulk nucleation mechanism dominates. However, at ${\varepsilon}$ > ${\varepsilon}^*$, when the energy barrier becomes negative as well as a larger misfit provides a low-barrier path for the formation of dislocations, the nucleation of pits becomes energetically preferable. The free energy of mixing for $Ga_{1-x-y}In_xAl_yN$ quasiternary system was calculated and studied and its 3D sketch was plotted.

Three-dimensional TEM Characterization of Highly Oriented Diamond Films on a (100) Silicon Substrate

  • Seung Joon Jeon;Arun Kymar Chawla;Young Joon Baik;Changmo Sung
    • The Korean Journal of Ceramics
    • /
    • 제3권3호
    • /
    • pp.155-158
    • /
    • 1997
  • Highly oriented diamond films were deposited on a (100) silicon substrate by bias enhanced nucleation technique. Both plan-view and cross-section TEM were applied to study the nucleation and growth mechanism of diamond grains. Randomly oriented polycrystalline diamond grains with internal microtwins were observed at the nucleation stage while defect free regions were retained at the growth stage and were apparently related with the epitaxy of diamond films. From our experimental results, the nucleation and texture formation mechanism of diamond films is discussed.

  • PDF

Factors Affecting Nucleation and Growth of Chromium Electrodeposited from Cr3+ Electrolytes Based on Deep Eutectic Solvents

  • El-Hallag, Ibrahim S.;Moharram, Youssef I.;Darweesh, Mona A.;Tartour, Ahmed R.
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권3호
    • /
    • pp.291-309
    • /
    • 2020
  • Chromium was electrodeposited from deep eutectic solvents-based Cr3+ electrolytes on HB-pencil graphite electrode. Factors influencing the electrochemical behavior and the processes of Cr nucleation and growth were explored using cyclic voltammetry and chronoamperometry techniques, respectively. Cr3+ reduction was found to occur through an irreversible diffusion-controlled step followed by another irreversible one of impure diffusional behaviour. The reduction behavior was found to be greatly affected by Cr3+ concentration, temperature, and type of hydrogen bond donor used in deep eutectic solvents (DESs) preparation. A more comprehensive model was suggested and successfully applied to extract a consistent data relevant to Cr nucleation kinetics from the experimental current density transients. The potential, the temperature, and the hydrogen bond donor type were estimated to be critical factors controlling Cr nucleation. The nucleation and growth processes of Cr from either choline chloride/ethylene glycol (EG-DES) or choline chloride/urea (U-DES) deep eutectic solvents were evaluated at 70℃ to be three-dimensional (3D) instantaneous and diffusion-controlled, respectively. However, the kinetics of Cr nucleation from EG-DES was found to be faster than that from U-DES. Cr nucleation was tending to be instantaneous at higher temperature, potential, and Cr3+ concentration. Cr nuclei electrodeposited from EG-DES were characterized at different conditions using scanning electron microscope (SEM). SEM images show that high number density of fine spherical nuclei of almost same sizes was nearly obtained at higher temperature and more negative potential. Energy dispersive spectroscopy (EDS) analysis confirms that Cr deposits were obtained.

EFFECT OF SUBSTRATE BIAS ON THE DIAMOND GROWTH USING MICROWAVE PLASMA CVD

  • Sakamoto, Yukihiro;Takaya, Matsufumi
    • 한국표면공학회지
    • /
    • 제32권3호
    • /
    • pp.303-306
    • /
    • 1999
  • On the effect of substrate bias at first stage of diamond synthesis at lower substrate temperature(approximately 673K) using microwave plasma CVD and effect of reaction gas system for the bias enhanced nucleation were studied. The reaction gas was mixture of methane and hydrogen or carbon monoxide and hydrogen. The nucleation density of applied bias -150V using $CH_4-H_2$ reaction gas system, significantly higher than that of $C-H_2$ reaction gas system. When the $CH_4-H_2$ reaction was used, nucleation density was increased because of existence of SiC as a interface for diamond nucleation. By use of this negative bias effect for fabrication of CVD diamond film using two-step diamond growth without pre-treatment, fabrication of the diamond film consist of diamond grains $0.2\mu\textrm{m}$ in diameter was demonstrated

  • PDF

산화 적층 결합의 생성, 성장 및 소멸에 관한 연구 - 제1부:산화 적층 결함의 생성과 열적 거동 (A Study on Nucleation, Growth and Shrinkage of Oxidation Induced Stacking Faults (OSF) -Part 1: Nucleation and Thermal Behavior of Oxidation Induced Stacking Faults(OSF))

  • 김용태;김선근;민석기
    • 대한전자공학회논문지
    • /
    • 제25권7호
    • /
    • pp.759-766
    • /
    • 1988
  • the effect of heat treatment in oxygen ambient on the nucleation and growth of oxidation induced stacking faults(OSF) in n-type(100)silicon wafer has been investigated. The growth of OSF is determind as a function of oxygen concentration in silicon wafer, heat treatment time and temperature, and the activation energy for the growth of OSF can be obtained from the growth kinetics. The activation energies are respectively 2.66 eV for dry oxidation and 2.37 eV for wet oxidation. In this paper, we have also studied the structural feature of OSF with the comparison of optical microscopic morphology and crystalline structure.

  • PDF

Synthesis of diamond thin films by hot-filament C.V.D

  • 최진일
    • 한국결정성장학회지
    • /
    • 제8권2호
    • /
    • pp.227-232
    • /
    • 1998
  • Si, Mo 등을 substrate로 하고 Hot-Filament C.V.D법으로 저압으로 다이아몬드 박막을 생성시킬 때 탄화수소의 부착과정, 핵생성 및 성장을 조사하였다. 특성은 substrate의 종류, 온도, 압력, 유속 및 $CH_4-H_2$가스의 몰분율과 같은 process 변수로 조사하였으며 다이아몬드는 Ra-man spectroscopy로 측정하였다. 특히 다이아몬드 핵생성과 성장은 scratch와 같은 결함이 있는 곳에 발생하였고 표면확산 등이 핵생성 초기단계에서 중요한 역할을 하였다.

  • PDF

전착법으로 제작한 Ni(OH)2 나노 시트의 핵 형성과 성장 거동에 미치는 헥사-메틸렌테트라민(HMT)의 영향 (Effect of Hexa-methylenetetramine (HMT) on Nucleation and Growth Behaviors of Ni(OH)2 Nanosheets Produced by Electrodeposition)

  • 김동연;손인준;최문현
    • 한국표면공학회지
    • /
    • 제54권1호
    • /
    • pp.37-42
    • /
    • 2021
  • Electrodeposition is a synthetic method that allows fine control of the nucleation and growth factors of metals and is a suitable method for studying the nucleation and growth of Ni(OH)2. Hexa-methylenetetramine (HMT) helps to form Ni(OH)2 nanosheets by increasing the OH- of the nickel precursor solution and helps to improve the electrochemical properties of the electrode. In this study, the structural properties of Ni(OH)2 nanosheets according to the HMT concentration change using electrodeposition were studied. As the concentration of HMT increased, the size and thickness of the Ni(OH)2 nanosheet adsorbed on the surface increased and porosity increased. Also, the Scharifker-Hills nucleation theory model and experimental data were compared. In conclusion, the nanosheet shape of the HMT 7.5 mM sample electrodeposited with -0.85 V vs. Ag/AgCl grew most uniformly, and the best result was obtained as an electrode material for a pseudocapacitor.