Browse > Article
http://dx.doi.org/10.12989/anr.2017.5.4.303

Growth features and nucleation mechanism of Ga1-x-yInxAlyN material system on GaN substrate  

Simonyan, Arpine K. (Department of Physics of Semiconductors and Microelectronics, Yerevan State University)
Gambaryan, Karen M. (Department of Physics of Semiconductors and Microelectronics, Yerevan State University)
Aroutiounian, Vladimir M. (Department of Physics of Semiconductors and Microelectronics, Yerevan State University)
Publication Information
Advances in nano research / v.5, no.4, 2017 , pp. 303-311 More about this Journal
Abstract
The continuum elasticity model is applied to investigate quantitatively the growth features and nucleation mechanism of quantum dots, nanopits, and joint QDs-nanopits structures in GaInAlN quasyternary systems. We have shown that for GaInAlN material system at the critical strain of ${\varepsilon}^*=0.039$ the sign of critical energy and volume is changed. We assume that at ${\varepsilon}={\varepsilon}^*$ the mechanism of the nucleation is changed from the growth of quantum dots to the nucleation of nanopits. Obviously, at small misfit (${\varepsilon}$ < ${\varepsilon}^*$), the bulk nucleation mechanism dominates. However, at ${\varepsilon}$ > ${\varepsilon}^*$, when the energy barrier becomes negative as well as a larger misfit provides a low-barrier path for the formation of dislocations, the nucleation of pits becomes energetically preferable. The free energy of mixing for $Ga_{1-x-y}In_xAl_yN$ quasiternary system was calculated and studied and its 3D sketch was plotted.
Keywords
quantum dot; nanopit; strain energy; Gibbs free energy; immiscibility gap;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Aroutiounian, V.M., Gambaryan, K.M. and Soukiassian, P.G. (2010), "Competing nucleation mechanisms and growth of InAsSbP quantum dots and nanopits on the InAs(100) surface", Surf. Sci., 604(13), 1127-1134.   DOI
2 Bi, Z., Lindgren, D., Johansson, B.J., Ek, M., Wallenberg, L.R., Gustafsson, A., Borgstrom, M.T., Ohlsson, J., Monemar, B. and Samuelson, L. (2014), "InN quantum dots on GaN nanowires grown by MOVPE", Physica Status Solidi (c), 11, 3-4.   DOI
3 Biehl, M., Much, F. and Vey, C. (2005), "Off-lattice Kinetic Monte Carlo simulations of strained eteroepitaxial growth", Int. Series of Numerical Mathematics, 149, 41-56.
4 Deibuk, V.G. (2003), "Thermodinamic stability of GaInSb, InAsSb, and GaInP epitaxial films", Semiconductors, 37(10), 1151-1155.   DOI
5 Emeljanova, O.S., Strelchenko, S.S. and Usacheva, M.P. (2009), "Spinodal decomposition of ZnO-BeO alloys", Semiconductors, 43(2), 135-138.   DOI
6 Kim, H.W., Kim, H.S., Na, H.G., Yang, J.C., Kim, S.S. and Lee, C. (2010), "Self-catalytic growth and characterization of composite (GaN, InN) nanowires", Chem. Eng. J., 165(2), 720-727.   DOI
7 Gambaryan, K.M. (2010), "Interaction and cooperative nucleation of InAsSbP quantum dots and pits on InAs(100) substrate", Nanoscale Res. Lett., 5(3), 587.   DOI
8 Gambaryan, K.M., Aroutiounia, V.M. and Harutyunyan, V.G. (2011), "Photovoltaic and optoelectronic properties of InAs(100)-based PCCs with quantum dots and nanopits", Infrared Phys. Techn., 54(2), 114-120.   DOI
9 Ihsiu, H. and Stringfellow, G.B. (1996), "Solid phase immiscibility in GaInN", Appl. Phys. Lett., 69(18), 2701-2703.   DOI
10 Lozano, J.G., Sanchez, A.M., Garcia, R., Gonzalez, D. (2005), "Nucleation of InN quantum dots on GaN by metalorganic vapor phase epitaxy", Appl. Phys. Lett., 87(26), 263104.   DOI
11 Lozano, J.G., Sanchez, A.M., Garcia, R., Ruffenach, S., Briot, O. and Gonzalez, D. (2007), "Strain relief analysis of InN Quantum Dots grown on GaN", Nanoscale Res Lett., 2(9), 442-446.   DOI
12 Lahourcade, L., Valdueza-Felip, S., Kehagias, T., Dimitrakopulos, G.P., Komninou, P. and Monroy, E. (2009), "Stranski-Krastanow growth of 1122 -oriented GaN/AlN quantum dots", App. Phys. Lett., 94, 111901.   DOI
13 Nakamura, S., Senoh, M., Iwasa, N. and Nagahama, S. (1995), "Superbright green InGaN singlequantumwell structure light-emitting diodes", Jpn. J. Appl. Phys., 34, L79.   DOI
14 Nakamura, S., Senoh, M., Nagahama, S., Iwasa, Yamada, N.T., Matsushita, T., Kiyoko, H. and Sugimoto, Y. (1996), "InGaN-based multi-quantum-well-structure laser Diodes", Jpn. J. Appl. Phys., 35, L74.   DOI
15 Tersoff, J. and Le Goues, F.K. (1994), "Competing relaxation mechanisms in strained layers", Phys. Rev. Lett., 72(22), 3570.   DOI
16 Soto Rodriguez, P.E.D., Gomez, V.J., Kumar, P., Calleja, E. and Notzel, R. (2013), "Near-infrared InN quantum dots on high-In composition InGaN", Appl. Phys. Lett., 102(13), 131909.   DOI
17 Stringfellow, G.B. (1999), Organometallic Vapor-Phase Epitaxy: Theory and Practice, Elsevier, San Diego, CA, USA.
18 Strite, S. and Morkoc, H. (1992), "GaN, AIN, and InN: A review", J. Vac. Sci. Technol. B, 10(4), 1237-1266.   DOI
19 Tersoff, J. and Tromp, R.M. (1993), "Shape transition in growth of strained islands: Spontaneous formation of quantum wires", Phys. Rev. Letters, 70(18), 2782-2785.   DOI
20 Vigdorovich, E.N. and Sveshnikov, Y.N. (2000), "Thermodynamic stability of GaN-InN-AlN system", Inorganic Mater., 36(5), 465-467.   DOI
21 Wakahara, A., Tokuda, T., Dang, X.-Z., Noda, S. and Sasaki, A. (1997), "Compositional inhomogeneity and immiscibility of a GaInN ternary alloy", Appl. Phys. Lett., 71, 906.   DOI
22 Yang, W., Li, J., Zhang, Y., Huang, P.K., Lu, T.C., Kuo, H.C., Li, S., Yang, X., Chen, H., Liu, D. and Kang, J. (2014), "High density GaN/AlN quantum dots for deep UV LED with high quantum efficiency and temperature stability", Scientific Reports, 4, 5166.
23 Zenkiewicz, M. (2007), "Methods for the calculation of surface free energy of solids", J. Achieve. Mater. Manuf. Eng., 24(1), 137-147.
24 Onabe, K. (1984), "Immiscibility analysis for III-V Quaternary solid solutions", NEC Res. Develop., 72, 1-11.