Browse > Article
http://dx.doi.org/10.5695/JKISE.2021.54.1.37

Effect of Hexa-methylenetetramine (HMT) on Nucleation and Growth Behaviors of Ni(OH)2 Nanosheets Produced by Electrodeposition  

Kim, Dong Yeon (Department of Materials Science and Metallurgical Engineering, Kyungpook National University)
Son, Injoon (Department of Materials Science and Metallurgical Engineering, Kyungpook National University)
Choi, Mun-Hyun (Dongkang Tech Corp.)
Publication Information
Journal of the Korean institute of surface engineering / v.54, no.1, 2021 , pp. 37-42 More about this Journal
Abstract
Electrodeposition is a synthetic method that allows fine control of the nucleation and growth factors of metals and is a suitable method for studying the nucleation and growth of Ni(OH)2. Hexa-methylenetetramine (HMT) helps to form Ni(OH)2 nanosheets by increasing the OH- of the nickel precursor solution and helps to improve the electrochemical properties of the electrode. In this study, the structural properties of Ni(OH)2 nanosheets according to the HMT concentration change using electrodeposition were studied. As the concentration of HMT increased, the size and thickness of the Ni(OH)2 nanosheet adsorbed on the surface increased and porosity increased. Also, the Scharifker-Hills nucleation theory model and experimental data were compared. In conclusion, the nanosheet shape of the HMT 7.5 mM sample electrodeposited with -0.85 V vs. Ag/AgCl grew most uniformly, and the best result was obtained as an electrode material for a pseudocapacitor.
Keywords
Electrodeposition; Hexa-methylenetetramine (HMT); $Ni(OH)_2$ nanosheet; Scharifker-Hills nucleation theory model;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wang, L., Li, X., Guo, T., Yan, X., Tay, B. K., Int. J. Hydrogen Energy, 39 (2014) 7876-7884   DOI
2 Kulkarni, S. B., Jagadale, A. D., Kumbhar, V. S., Bulakhe, R. N., Joshi, S. S., Lokhande, C. D., Int. J. Hydrogen Energy, 38, (2013) 4046-4053   DOI
3 Han, Chong, Cao, Weiyi Si, Huizheng, Wu, Yu, Liu, Kaiyu, Liu, Hongtao, Sang, Shangbin, Wu, Qiumei, Electrochim. Acta, 322 (2019)
4 Zhou, X., Wang, Y., Liang, Z., Jin, H., Materials (Basel), 11, (2018)
5 Ma, Y., Yang, M., Jin, X., Colloids Surfaces A Physicochem. Eng. Asp., 588 (2020) 124374   DOI
6 Ait Himi, M., El ghachtouli, S., Youbi, B., Lghazi, Y., Bimaghra, I., Mater. Today Proc., (2020)
7 Hwang, Bing Joe, Santhanam, Raman, Lin, Yi Liang, Electrochimi. Acta, 46 (2001) 2843-2853   DOI
8 Tang, Z., Tang, C. H., Gong, H, Adv. Funct. Mater, 22 (2012) 1272-1278   DOI
9 Zhao, X., Sanchez, B. M., Dobson, P. J., Grant, P. S., Nanoscale 3, (2011) 839-855   DOI
10 Largeot, Celine, Portet, Cristelle, Chmiola, John, Taberna, Pierre Louis, Gogotsi, Yury Simon, Patrice, J. Am. Chem. Soc., 130 (2008) 2730-2731   DOI
11 Milchev, A., Krastev, I., Electrochim. Acta, 56 (2011) 2399-2403   DOI
12 Grujicic, D., Pesic, B., Electrochim. Acta, 47 (2002) 2901-2912   DOI
13 Lu, G., Zangari, G., J. Phys. Chem. B, 109 (2005) 7998-8007   DOI
14 Scharifker, B., Electrochim. Acta, 28 (1982) 879-889   DOI
15 Saravanan, G., Mohan, S., Anal. Methods, 12 (2020) 3617-3625   DOI
16 Augustyn, V., Simon, P., Dunn, B, Energy Environ. Sci, 7, (2014) 1597-1614   DOI
17 Kang, J., Zhang, S., Zhang, Z. Adv. Mater., 29 (2017) 1-12