DOI QR코드

DOI QR Code

전착법으로 제작한 Ni(OH)2 나노 시트의 핵 형성과 성장 거동에 미치는 헥사-메틸렌테트라민(HMT)의 영향

Effect of Hexa-methylenetetramine (HMT) on Nucleation and Growth Behaviors of Ni(OH)2 Nanosheets Produced by Electrodeposition

  • 김동연 (경북대학교 금속신소재공학전공) ;
  • 손인준 (경북대학교 금속신소재공학전공) ;
  • 최문현 (동강테크)
  • Kim, Dong Yeon (Department of Materials Science and Metallurgical Engineering, Kyungpook National University) ;
  • Son, Injoon (Department of Materials Science and Metallurgical Engineering, Kyungpook National University) ;
  • Choi, Mun-Hyun (Dongkang Tech Corp.)
  • 투고 : 2020.12.22
  • 심사 : 2021.02.26
  • 발행 : 2021.02.28

초록

Electrodeposition is a synthetic method that allows fine control of the nucleation and growth factors of metals and is a suitable method for studying the nucleation and growth of Ni(OH)2. Hexa-methylenetetramine (HMT) helps to form Ni(OH)2 nanosheets by increasing the OH- of the nickel precursor solution and helps to improve the electrochemical properties of the electrode. In this study, the structural properties of Ni(OH)2 nanosheets according to the HMT concentration change using electrodeposition were studied. As the concentration of HMT increased, the size and thickness of the Ni(OH)2 nanosheet adsorbed on the surface increased and porosity increased. Also, the Scharifker-Hills nucleation theory model and experimental data were compared. In conclusion, the nanosheet shape of the HMT 7.5 mM sample electrodeposited with -0.85 V vs. Ag/AgCl grew most uniformly, and the best result was obtained as an electrode material for a pseudocapacitor.

키워드

참고문헌

  1. Augustyn, V., Simon, P., Dunn, B, Energy Environ. Sci, 7, (2014) 1597-1614 https://doi.org/10.1039/c3ee44164d
  2. Kang, J., Zhang, S., Zhang, Z. Adv. Mater., 29 (2017) 1-12
  3. Tang, Z., Tang, C. H., Gong, H, Adv. Funct. Mater, 22 (2012) 1272-1278 https://doi.org/10.1002/adfm.201102796
  4. Zhao, X., Sanchez, B. M., Dobson, P. J., Grant, P. S., Nanoscale 3, (2011) 839-855 https://doi.org/10.1039/c0nr00594k
  5. Largeot, Celine, Portet, Cristelle, Chmiola, John, Taberna, Pierre Louis, Gogotsi, Yury Simon, Patrice, J. Am. Chem. Soc., 130 (2008) 2730-2731 https://doi.org/10.1021/ja7106178
  6. Wang, L., Li, X., Guo, T., Yan, X., Tay, B. K., Int. J. Hydrogen Energy, 39 (2014) 7876-7884 https://doi.org/10.1016/j.ijhydene.2014.03.067
  7. Kulkarni, S. B., Jagadale, A. D., Kumbhar, V. S., Bulakhe, R. N., Joshi, S. S., Lokhande, C. D., Int. J. Hydrogen Energy, 38, (2013) 4046-4053 https://doi.org/10.1016/j.ijhydene.2013.01.047
  8. Han, Chong, Cao, Weiyi Si, Huizheng, Wu, Yu, Liu, Kaiyu, Liu, Hongtao, Sang, Shangbin, Wu, Qiumei, Electrochim. Acta, 322 (2019)
  9. Zhou, X., Wang, Y., Liang, Z., Jin, H., Materials (Basel), 11, (2018)
  10. Ma, Y., Yang, M., Jin, X., Colloids Surfaces A Physicochem. Eng. Asp., 588 (2020) 124374 https://doi.org/10.1016/j.colsurfa.2019.124374
  11. Ait Himi, M., El ghachtouli, S., Youbi, B., Lghazi, Y., Bimaghra, I., Mater. Today Proc., (2020)
  12. Hwang, Bing Joe, Santhanam, Raman, Lin, Yi Liang, Electrochimi. Acta, 46 (2001) 2843-2853 https://doi.org/10.1016/S0013-4686(01)00495-9
  13. Milchev, A., Krastev, I., Electrochim. Acta, 56 (2011) 2399-2403 https://doi.org/10.1016/j.electacta.2010.11.025
  14. Grujicic, D., Pesic, B., Electrochim. Acta, 47 (2002) 2901-2912 https://doi.org/10.1016/S0013-4686(02)00161-5
  15. Lu, G., Zangari, G., J. Phys. Chem. B, 109 (2005) 7998-8007 https://doi.org/10.1021/jp0407324
  16. Scharifker, B., Electrochim. Acta, 28 (1982) 879-889 https://doi.org/10.1016/0013-4686(83)85163-9
  17. Saravanan, G., Mohan, S., Anal. Methods, 12 (2020) 3617-3625 https://doi.org/10.1039/D0AY00021C