• Title/Summary/Keyword: Nuclear protein

Search Result 1,650, Processing Time 0.026 seconds

A Ser/Thr Specific Protein Kinase Activates the Mouse Rantes Gene after Lipolpolysaccharide STimulation

  • Kim, Youn-Uck;Kim, Youn-Hwoan;An, Duek -Jun;Kwon, Hyuk-Chu
    • Journal of Microbiology
    • /
    • v.39 no.4
    • /
    • pp.314-320
    • /
    • 2001
  • Macrophages stimulated by lipopolysaccharide(LPS) from gram negative bacteria undergo activation of a group of immediate early genes including Rantes. The mouse Rantes gene promoter region contains an LPS rsponsive element(LPE) We detected 3 specific bands termed B1, B2 and 3 formed by the interaction of the LPE and proteins found in LPS-stimulated RAW 367.7 cells. An additional band B4 was determined to be an Ap-1 binding protein. The B1 band appears within 1 hour of LPS nuclear extracts from LPS-stimulation, and this protein kinase enhances B1 and formation. The B1 band can be converted to band B2/B3 by adding specific heparin column fraction purified Ser/Thr specific protein phosphatases PP-1 and PP-2A can stimulate the same conversion to about the same extent. Thus, the formation of the LRE sequence binding complex appears to be regulated by Ser/Thr protein kinase and one or more Ser/Thr specific phosphatases. At least four proteins are involved in the trgulation of the LRE-dependent Rants experssion: two binding factors that bind directly to the target sequences. and two factors that control their binding. The future purification and characterization of these binding pro-teins will reveal in detail the mechanism of Rantes gene activation after LPS stimulation.

  • PDF

High-yield Expression and Characterization of Syndecan-4 Extracellular, Transmembrane and Cytoplasmic Domains

  • Choi, Sung-Sub;Kim, Ji-Sun;Song, Jooyoung;Kim, Yongae
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1120-1126
    • /
    • 2013
  • The syndecan family consists of four transmembrane heparan sulfate proteoglycans present in most cell types and each syndecan shares a common structure containing a heparan sulfate modified extracellular domain, a single transmembrane domain and a C-terminal cytoplasmic domain. To get a better understanding of the mechanism and function of syndecan-4 which is one of the syndecan family, it is crucial to investigate its three-dimensional structure. Unfortunately, it is difficult to prepare the peptide because it is membrane-bound protein that transverses the lipid bilayer of the cell membrane. Here, we optimize the expression, purification, and characterization of transmembrane, cytoplasmic and short extracellular domains of syndecan4 (syndecan-4 eTC). Syndecan-4 eTC was successfully obtained with high purity and yield from the M9 medium. The structural information of syndecan-4 eTC was investigated by MALDI-TOF mass (MS) spectrometry, circular dichroism (CD) spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. It was confirmed that syndecan-4 eTC had an ${\alpha}$-helical multimeric structure like transmembrane domain of syndecan-4 (syndecan-4 TM) in membrane environments.

Non-saponin fraction of red ginseng inhibits monocyte-to-macrophage differentiation and inflammatory responses in vitro (홍삼 비사포닌 분획의 단핵세포 분화와 염증반응에 대한 억제효과)

  • Kang, Bobin;Kim, Chae Young;Hwang, Jisu;Choi, Hyeon-Son
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.70-80
    • /
    • 2019
  • The aim of this study was to investigate the effects of red ginseng-derived non-saponin fraction (NSF) on inflammatory responses and monocyte-to-macrophage differentiation in RAW264.7 and THP-1. NSF effectively inhibited inflammatory responses by downregulating nitric oxide (NO) production and protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). NSF ($2000{\mu}g/mL$) decreased the levels of NO, iNOS, and COX-2 by 33, 83, and 64%, respectively. NSF inhibited the differentiation of monocyte-to-macrophage by decreasing cell adherence along with downregulation of the cluster of differentiation molecule $11{\beta}$ ($CD11{\beta}$) and CD36. In addition, pro-inflammatory cytokines, such as tumor necrosis factor-alpha, interleukin 6, and monocyte chemoattractant protein 1 (MCP-1), were significantly reduced with NSF treatment. The NSF-mediated inhibition of inflammatory responses was due to the regulation of nuclear factor kappa-light-chain-enhancer of activated B cells ($NF-{\kappa}B$) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2). NSF effectively suppressed the translocation of $NF-{\kappa}B$ into the nucleus, while nuclear Nrf2 and its target protein, heme oxygenase-1, levels were significantly increased.

Proteasome Inhibitor-Induced IκB/NF-κB Activation is Mediated by Nrf2-Dependent Light Chain 3B Induction in Lung Cancer Cells

  • Lee, Kyoung-Hee;Lee, Jungsil;Woo, Jisu;Lee, Chang-Hoon;Yoo, Chul-Gyu
    • Molecules and Cells
    • /
    • v.41 no.12
    • /
    • pp.1008-1015
    • /
    • 2018
  • $I{\kappa}B$, a cytoplasmic inhibitor of nuclear factor-${\kappa}B$ ($NF-{\kappa}B$), is reportedly degraded via the proteasome. However, we recently found that long-term incubation with proteasome inhibitors (PIs) such as PS-341 or MG132 induces $I{\kappa}B{\alpha}$ degradation via an alternative pathway, lysosome, which results in $NF-{\kappa}B$ activation and confers resistance to PI-induced lung cancer cell death. To enhance the anti-cancer efficacy of PIs, elucidation of the regulatory mechanism of PI-induced $I{\kappa}B{\alpha}$ degradation is necessary. Here, we demonstrated that PI up-regulates nuclear factor (erythroid-derived 2)-like 2 (Nrf2) via both de novo protein synthesis and Kelch-like ECH-associated protein 1 (KEAP1) degradation, which is responsible for $I{\kappa}B{\alpha}$ degradation via macroautophagy activation. PIs increased the protein level of light chain 3B (LC3B, macroautophagy marker), but not lysosome-associated membrane protein 2a (Lamp2a, the receptor for chaperone-mediated autophagy) in NCI-H157 and A549 lung cancer cells. Pretreatment with macroautophagy inhibitor or knock-down of LC3B blocked PI-induced $I{\kappa}B{\alpha}$ degradation. PIs up-regulated Nrf2 by increasing its transcription and mediating degradation of KEAP1 (cytoplasmic inhibitor of Nrf2). Overexpression of dominant-negative Nrf2, which lacks an N-terminal transactivating domain, or knock-down of Nrf2 suppressed PI-induced LC3B protein expression and subsequent $I{\kappa}B{\alpha}$ degradation. Thus, blocking of the Nrf2 pathway enhanced PI-induced cell death. These findings suggest that Nrf2-driven induction of LC3B plays an essential role in PI-induced activation of the $I{\kappa}B$/$NF-{\kappa}B$ pathway, which attenuates the anti-tumor efficacy of PIs.

HK Shiitake Mushroom Mycelium Exhibits Immune Functions in ConA-Treated Human Jurkat Cells Through NFAT Activation (HK표고버섯균사체의 ConA로 처리된 Jurkat cells에서 NFAT 활성화를 통한 면역증진)

  • Oh, Tae Woo;Moon, Yun Gu;Kim, Hun Hwan;Kim, Gon Sup;Kim, Jeong Ok;Ha, Yeong Lae
    • Journal of Life Science
    • /
    • v.32 no.9
    • /
    • pp.678-689
    • /
    • 2022
  • HK shiitake mushroom mycelium (HKSMM), containing 14% β-glucan, is a health functional food ingredient approved individually for liver health by the Ministry of Food and Drug Safety. The immune-enhancing efficacy of a 50% aqueous ethanol extract of HKSMM (designated HKSMM50) was studied in Jurkat cells activated with concanavalin A (ConA). Active hexose correlated compound (AHCC) was used as a positive control. ConA-activated Jurkat cells were treated with HKSMM50 (0, 25, 50, 100 ㎍ g/ml) or AHCC (100 ㎍ g/ml), and cultured for 3 and 6 hours. The nuclear factor of activated T cells (NFAT) protein content in the cytosol and the nucleus was measured by Western blotting. Interleukin-2 (IL-2), interferon-gamma (IFN-γ), and cyclooxygenase-2 (COX-2) were determined using enzyme-linked immunosorbent assay (ELISA) kits. HKSMM50 lowered NFAT content in the cytosol, but elevated NFAT content in the nucleus. The IL-2 and IFN-γ productions were elevated. Meanwhile, both COX-2 activity and apoptosis were suppressed. The efficacy of the AHCC treatment showed similar to those of HKSMM50 treatments. These results indicate that the HKSMM50 exhibited immune-enhancing effects in ConA-treated Jurkat cells by activation of NFAT protein, and suggest that HKSMM could be used as a health functional food ingredient to improve immune functions in humans.

Action of Protein Kinase A and C Activators on Germinal Vesicle Breakdown and One-Cell Embryos in the Mouse (생쥐 GV난자와 1-세포기 배아의 핵막붕괴에 미치는 Protein Kinase A와 C의 작용)

  • 이대기;김경진;조완규
    • The Korean Journal of Zoology
    • /
    • v.32 no.2
    • /
    • pp.153-162
    • /
    • 1989
  • Expedments were perfonned to examine the role of cAMP-dependent protein kinase (PK-A) and diacylglycerol-dependent protein kinase (PK-C) during the meiodc resumption and the first mitotic cell cycle of mouse embryogenesis. Mejoric GV oocytes and one-cell embryos derived from in vitro fertilization were cultured in vitro, and morphological changes in response to activators of PK-A and PK-C were examined. Treatments with a membrane-permeable cAMP analog, dbcAMP (0.1 mg/mi), phosphodiesterase inhibitor, IBMX (0.1 mM), biologically active phorbol ester, WA (10 nglmi), or a synthetic diacylglycerol, sn-diC8 inhibited resumption of melosis. Combination of PK-A and PK-C activator brought about furiher inhibition. On the contrary, dbcAMP (0.1 mg/mi), IBMX (0.2 mM), WA (10 nglml), and sn-diC8 (0.5 mM) did not inhibit pronucleus membrane breakdown (PNBD) when added S or G2 phase of cell cycle. However, activators of PK-C inhibited cleavage of one-cefl embryos. This result indicates that the action mechanism of PK-A and PK-C on dissolution of nuclear membrane in primary meiotic arrest oocytes may be different from that of mitotic one-cell embryos.

  • PDF

Enhanced Green Fluorescent Protein Gene under the Regulation of Human Oct4 Promoter as a Marker to Identify Reprogramming of Human Fibroblasts

  • Heo, Soon-Young;Ahn, Kwang-Sung;Kang, Jee-Hyun;Shim, Ho-Sup
    • Reproductive and Developmental Biology
    • /
    • v.32 no.2
    • /
    • pp.135-140
    • /
    • 2008
  • Recent studies on nuclear transfer and induced pluripotent stem cells have demonstrated that differentiated somatic cells can be returned to the undifferentiated state by reversing their developmental process. These epigenetically reprogrammed somatic cells may again be differentiated into various cell types, and used for cell replacement therapies through autologous transplantation to treat many degenerative diseases. To date, however, reprogramming of somatic cells into undifferentiated cells has been extremely inefficient. Hence, reliable markers to identify the event of reprogramming would assist effective selection of reprogrammed cells. In this study, a transgene construct encoding enhanced green fluorescent protein (EGFP) under the regulation of human Oct4 promoter was developed as a reporter for the reprogramming of somatic cells. Microinjection of the transgene construct into pronuclei of fertilized mouse eggs resulted in the emission of green fluorescence, suggesting that the undifferentiated cytoplasmic environment provided by fertilized eggs induces the expression of EGFP. Next, the transgene construct was introduced into human embryonic fibroblasts, and the nuclei from these cells were transferred into enucleated porcine oocytes. Along with their in vitro development, nuclear transfer embryos emitted green fluorescence, suggesting the reprogramming of donor nuclei in nuclear transfer embryos. The results of the present study demonstrate that expression of the transgene under the regulation of human Oct4 promoter coincides with epigenetic reprogramming, and may be used as a convenient marker that non-invasively reflects reprogramming of somatic cells.

Apolipoprotein E Phenotypes and the Relationship Among Lipid Levels, Nutrient Intakes, Lifestyles and Risk Factors Between Subjects with and without Hyperlipidemic Risk (Apolipoprotein E 다형성과 고지혈증 위험 유무에 따른 혈중 지질농도, 영양소 섭취, 생활습관 및 위험요인과의 관계)

  • Lee, Jae-Eun;Cho, Sang-Woon;Kang, Ji-Yeon;Paek, Yun-Mi;Choi, Chang-Sun;Park, Yoo-Kyoung;Choi, Tae-In
    • Journal of Nutrition and Health
    • /
    • v.41 no.5
    • /
    • pp.402-413
    • /
    • 2008
  • This study was performed to investigate Apolipoprotein E phenotypes and the relationship among lipid levels, nutrient intakes, lifestyles and risk factors between subjects with and without hyperlipidemic risk. The data were collected from 675 industrial male workers who had completed annual medical examination. Compared to the normal group, the hyperlipidemic risk group in Apo E3 and E4 had significantly higher BMI (p < 0.05) and showed significantly higher body fat (%), waist circumference and WHR in all types of Apo E (p < 0.05). In addition, the hyperlipidemic risk group had significantly higher total cholesterol, LDL-cholesterol, triglyceride and AI than the normal group in all types of Apo E (p < 0.05). Intakes of protein, calcium, phosphorus, iron, vitamin A, vitamin B1, vitamin B2, vitamin C and niacin in Apo E3 were significantly lower in the hyperlipidemic risk group than in the normal group (p < 0.05). In the logistic regression analysis, after adjustment for other factors, Apo E2 + E4, waist and WHR were the significant risk factors associated with hyperlipidemia, but protein intakes were associated with significantly lower risks of hyperlipidemia (p < 0.05). In conclusion, genetic factor (Apo E2 or Apo E4), anthropometric index and nutrient intake seem to influence hyperlidemic risk. Further studies and efforts will be needed to evaluate the independent relationships among hyperlipidemic risk factors.

Facilitation of SUMO (Small Ubiquitin-like Modifier) Modification at Tau 340-Lys Residue (a Microtubule-associated Protein) through Phosphorylation at 214-Ser Residue

  • Lee, Eun-Jeoung;Hyun, Sung-Hee;Chun, Jae-Sun;Ahn, Hye-Rim;Kang, Sang-Sun
    • Animal cells and systems
    • /
    • v.11 no.1
    • /
    • pp.39-50
    • /
    • 2007
  • Tau plays a role in numerous neuronal processes, such as vesicle transport, microtubule-plasma membrane interaction and intracellular localization of proteins. SUMO (Small Ubiquitin-like Modifier) modification (SUMOylation) appears to regulate diverse cellular processes including nuclear transport, signal transduction, apoptosis, autophagy, cell cycle control, ubiquitin-dependent degradation, as well as gene transcription. We noticed that putative SUMOylation site is localized at $^{340}K$ of $Tau(^{339}VKSE^{342})$ with the consensus sequence information (${\Phi}KxE$ ; where ${\Phi}$ represents L, I, V or F and x is any amino acid). In this report, we demonstrated that $^{340}K$ of Tau is the SUMOylation site and that a point mutant of Tau S214E (an analog of the phospho $^{214}S$ Tau) promotes its SUMOylation at $^{340}K$ and its nuclear or nuclear vicinity localization, by co-immunoprecipitation and confocal microscopy analysis. Further, we demonstrate that the Tau S214E (neither Tau S214A nor Tau K340R) mutant increases its protein stability. However, the SUMOylation at $^{340}K$ of Tau did not influence cell survival, as determined by FACS analysis. Therefore, our results suggested that the phosphorylation of Tau on $^{214}S$ residue promotes its SUMOylation on $^{340}K$ residue and nuclear vicinity localization, and increases its stability, without influencing cell survival.

Synthesis and biological evaluation of tricarbonyl technetium labeled 2-(4-chloro)phenyl-imidazo[1,2-a]pyridine analog (99mTc-CB257) as a TSPO-binding ligand

  • Choi, Ji Young;Jung, Jae Ho;Song, In Ho;Moon, Byung Seok;Lee, Byung Chul;Kim, Sang Eun
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.4 no.2
    • /
    • pp.73-79
    • /
    • 2018
  • In our previous study, tricarbonyl $^{99m}Tc$-labeled TSPO-binding ligand, named $^{99m}Tc$-CB256, having positively charge (+1) was investigated but did not show promising results in in vivo environment despite of a nanomolar binding affinity for TSPO. Because the overall positively charge of $^{99m}Tc$-CB256 would likely interrupt its target protein uptake, we herein designed the neutral tricarbonyl-$^{99m}Tc$ labeled TSPO-binding ligand ($^{99m}Tc$-CB257, 1). $^{99m}Tc$-CB257 was prepared by the facile incorporation of the $[^{99m}Tc(CO)_3]^+$ into a N-(hydroxycarbonylmethyl)-2-picoly moiety in CB257. The radiochemical yield of $^{99m}Tc$-CB257 after HPLC purification was $54.1{\pm}2.4%$ (decay corrected, n = 3). The authentic Re-CB257 (2) was synthesized by using $(NEt_4)_2[Re(CO)_3Br_3]$ in 69.0% yield. The binding affinity of 2 for TSPO was measured in leukocyte and showed approximately 280 times higher than that observed for the positively charged (+1) ligand, Re-CB256 ($K_i=0.57{\pm}0.06nM$ versus $159.3{\pm}8.7nM$, respectively). Our results indicated that 1 can be considered potentially as a new SPECT radiotracer for TSPO-rich cancer and provides the foundation for further in vivo evaluation related with abnormal TSPO-overexpression environments.