• Title/Summary/Keyword: Nuclear morphology

Search Result 337, Processing Time 0.025 seconds

Corrosion behavior of refractory metals in liquid lead at 1000 ℃ for 1000 h

  • Xiao, Zunqi;Liu, Jing;Jiang, Zhizhong;Luo, Lin
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.1954-1961
    • /
    • 2022
  • Lead-based fast reactor (LFR) has become one of the most promising reactors for Generation IV nuclear systems. A developing trend of LFR is high efficiency, along with operation temperatures up to 800 ℃ or even higher. One of key issues in the high-efficiency LFR is corrosion of cladding materials with lead at high temperatures. In this study, corrosion behavior of some refractory metals (Nb, Nb521, and Mo-0.5La) was investigated in static lead at 1000 ℃ for 1000 h. The results showed that Nb and Nb521 exhibited an intense dissolution corrosion with obvious lead penetration after corrosion, and lead penetration extended along the grain boundaries of the specimens. Furthermore, Nb521 showed a better corrosion resistance than that of Nb as a result of the elements of W and Mo included in Nb521. Mo-0.5La showed much better corrosion resistance than that of Nb and Nb521, and no lead penetration could be observed. However, an etched morphology appeared on the surface of Mo-0.5La, indicating the occurrence of corrosion to a certain degree. The results indicate that Mo-0.5La is compatible with lead up to 1000 ℃. While Nb and Nb alloys might be not compatible with lead for high-efficiency LFR at such high temperatures.

Occurrence of Nuclear Inclusions in Plant Cells (식물세포 내 핵 함유구조 발달 양상)

  • Kim, In-Sun
    • Applied Microscopy
    • /
    • v.41 no.4
    • /
    • pp.229-234
    • /
    • 2011
  • The occurrence of nuclear inclusions has been reported in various plant groups from primitive ferns to higher flowering plants. Their presence within a group seems to be randomly distributed without any phylogenetic relationships among species. According to the current survey, nuclear inclusions have been widely documented in more than several hundreds of species from various families of plants. The morphology and internal structures of nuclear inclusions are diverse and at least five types of inclusions develop within plant nuclei; amorphous, crystalline, fibrous, lamellar, and tubular form. Among these types, crystalline inclusions are the ones that are the most frequently reported. The inclusions are not bound by membranes and appear to be related to the nucleoli, either spatially by a close association or by an inverse relationship in size during development. The idea that nuclear inclusions are of a proteinaceous nature has been widely accepted. Further link to nucleolar activity as a protein storing site has also been suggested based on the association between the nucleolus and nuclear inclusions. Various investigations of nuclear inclusions have revealed more information about their structural features, but characterizing their precise function and subunit complexity employing molecular analysis and 3-D reconstruction remains to be elucidated. Tilting and tomography of serial sections with appropriate image processing can provide valuable information on their subunit(s). The present review summarizes discussion about different nuclear inclusions in plants from previous works, giving special attention to their fine, ultrastructural morphology, function, and origin.

Properties of Chemical Vapor Deposited ZrC coating layer for TRISO Coated Fuel Particle (화학증착법에 의하여 제조된 탄화지르코늄 코팅층의 물성)

  • Kim, Jun-Gyu;Kum, E-Sul;Choi, Doo-Jin;Lee, Young-Woo;Park, Ji-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.10
    • /
    • pp.580-584
    • /
    • 2007
  • The ZrC layer instead of SiC layer is a critical and essential layer in TRISO coated fuel particles since it is a protective layer against diffusion of fission products and provides mechanical strength for the fuel particle. In this study, we carried out computational simulation before actual experiment. With these simulation results, Zirconium carbide (ZrC) films were chemically vapor deposited on $ZrO_2$ substrate using zirconium tetrachloride $(ZrCl_4),\;CH_4$ as a source and $H_2$ dilution gas, respectively. The change of input gas ratio was correlated with growth rate and morphology of deposited ZrC films. The growth rate of ZrC films increased as the input gas ratio decreased. The microstructure of ZrC films was changed with input gas ratio; small granular type grain structure was exhibited at the low input gas ratio. Angular type structure of increased grain size was observed at the high input gas ratio.

Taxonomy and phylogeny of the genus Cryptomonas (Cryptophyceae, Cryptophyta) from Korea

  • Choi, Bomi;Son, Misun;Kim, Jong Im;Shin, Woongghi
    • ALGAE
    • /
    • v.28 no.4
    • /
    • pp.307-330
    • /
    • 2013
  • The genus Cryptomonas is easily recognized by having two flagella, green brownish color, and a swaying behavior. They have relatively simple morphology, and limited diagnostic characters, which present a major difficulty in differentiating between species of the genus. To understand species delineation and phylogenetic relationships among Cryptomonas species, the nuclear-encoded internal transcribed spacer 2 (ITS2), partial large subunit (LSU) and small subunit ribosomal DNA (rDNA), and chloroplast-encoded psbA and LSU rDNA sequences were determined and used for phylogenetic analyses, using Bayesian and maximum likelihood methods. In addition, nuclear-encoded ITS2 sequences were predicted to secondary structures, and were used to determine nine species and four unidentified species from 47 strains. Sequences of helix I, II, and IIIb in ITS2 secondary structure were very useful for the identification of Cryptomonas species. However, the helix IV was the most variable region across species in alignment. The phylogenetic tree showed that fourteen species were monophyletic. However, some strains of C. obovata had chloroplasts with pyrenoid while others were without pyrenoid, which used as a key character in few species. Therefore, classification systems depending solely on morphological characters are inadequate, and require the use of molecular data.

Generation of Nucler Hybrids Overcoming the Natural Barrier of Incompatibility: Transfer of Nuclei from Lentinula edodes into Protoplasts of Coriolus versicolor

  • Kim, Chaekyun;Choi, Eung-Chil;Kim, Byoung-Kak
    • Archives of Pharmacal Research
    • /
    • v.23 no.1
    • /
    • pp.79-86
    • /
    • 2000
  • Heterokaryotic nuclear hybrids overcoming the natural barriers of incompatibility have been studied in basidiomycetes. To produce these nuclear hybrids between incompatible mushrooms, which have several potent pharmacological effects, nuclear transfer was performed between Lentinula edodes and Coriolus versicolor. Nuclei from serine auxotrophs of Lentinula edodes, $LE207(Ser^{-})$ were transferred into the protoplasts of arginine auxotrophs of Coriolus versicolor, $CV17(Ser^{-})$using 30% polyethylene glycol 4000 in 10 mM $Cacl_{2}$-glycine solution (pH 8.0). Nulcear transfer progenies were selected by nutritional complementation on minimal media supplemented with 0.6 M sucrose. The progenies were classified based on colony morphology to L. edodes-like, C, versicolor-like and non-parental type. Most of the progenies grew slower than either parent. The number of nuclei per cell was similar but the DNA content varied between progenies. The isozyme patterns of nuclear hybrids resembled either of the parent porfiles or showed a mixed profile.

  • PDF

Nuclear star formation in galaxies due to non-axisymmetric bulges

  • Kim, Eunbin;Kim, Sungsoo S.;Lee, Gwang-Ho;Lee, Myung Gyoon;de Grijs, Richard;Choi, Yun-Young
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.61.2-61.2
    • /
    • 2014
  • A non-axisymmetric mass distribution of galactic structures including bulge (or bar) causes gas inflow from the disk to the nuclear region, including intense star formation within few hundred parsecs of galactic central. In order to investigate the relation between the ellipticity of the bulge and the presence of a nuclear starburst, we use a volume-limited sample of galaxies with Mr < -19.5 mag at 0.02 < z < 0.05 from the Sloan Digital Sky Survey Data Release 7. Total sample is 3252 spiral galaxies, which include nuclear starburst galaxies. We find that the occurrence of nuclear starbursts has a moderate correlation with bulge ellipticity of intermediate-type spiral galaxies (morphology classes Sab-Sb) in low galaxy number density environments and isolated regions where the distance between the target galaxies and the closest galaxies is relatively far. In high galaxy number density environments and interacting regions, close encounters and mergers between galaxies can cause gas inflow to the nuclear region even without the presence of non-axisymmetric bulges.

  • PDF

Effect of $Ca^{2+}$ Concentration in Fusion Medium on the Fusion, Nuclear Morphology and Development of Bovine Somatic Cell Nuclear Transfer Embryos (세포 융합액 중의$Ca^{2+}$ 농도가 소 체세포 핵이식란의 융합, 핵형 및 체외발육에 미치는 영향)

  • 조재원;김정익;박춘근;양부근;정희태
    • Korean Journal of Animal Reproduction
    • /
    • v.26 no.1
    • /
    • pp.33-39
    • /
    • 2002
  • This study was conducted to investigate the effect of $Ca^{2+}$ concentration in fusion medium on the fusion, nuclear morphology and the development of bovine somatic cell nuclear transfer embryos. Bovine skin cells were transferred into an enucleated oocyte and fused with cytoplasm in the fusion medium containing with 0.05 to 1.0 mM Cacl$_2$. Nuclear transfer embryos were activated with a combination of A23187 and cycloheximide. Nuclear transfer embryos were fixed at 3 h after fusion or cultured for 7 ~8 days. Fusion rate was significantly (P<0.01) increased by increasing the $Ca^{2+}$ concentrations in the fusion medium from 0.05 mM (56.6%) to 0.5 mM (50.1%) and 1.0 mM (84.3%). More than 80% of reconstituted embryos underwent premature chromosome condensation (PCC) with 0.05, 0.1 mM CaCl$_2$, whereas 54.5% and 59.3% of embryos formed pronucleus (PN) directly without PCC in the 0.5 and 1.0 mM CaCl$_2$, groups. Blastocyst formation rates were significantly (P<0.05) different between 0.1 mM and 1.0 mM CaCl$_2$groups. From the present result, it is suggested that the elevated $Ca^{2+}$ concentrations in fusion medium can enhance the fusion and blastocyst formation rates of bovine nuclear transfer embryos.bryos.

Two Freshwater Cryptomonads New to Korea: Cryptomonas marssonii and C. pyrenoidifera

  • Kim, Jee-Hwan;Boo , Sung-Min;Shin, Woong-Ghi
    • ALGAE
    • /
    • v.22 no.3
    • /
    • pp.147-152
    • /
    • 2007
  • We described two brownish freshwater Cryptomonas species, C. marssonii Skuja and C. pyrenoidifera Geitler as first records in Korea. The identification was based on light microscopy, scanning electron microscopy, and nuclear SSU rDNA sequences analysis. Cryptomonas marssonii is characterized by its sigmoid shape with a sharply pointed and dorsally curved antapex, dorso-ventrally flattened cell, two lateral plastids without pyrenoid, and its dimension of 18-25 μm in length and 8-13 μm in width. Cryptomonas pyrenoidifera is characterized by ovoid to elliptical shape with a partially twisted or rounded antapex, dorso-ventrally biconvex cell, lateral plastids with two pyrenoids, and the dimensions of 15-22 μm in length and 10-14 μm in width. Nuclear SSU rDNA sequences between C. marssonii WCK01 from Korea and CCAC0086 from Gernmay, and between C. pyrenoidifera WCK02 from Korea and CCMP152 from Australia were identical, respectively.

Fabrication and Characterization of Carbon-Coated Cu Nanopowders by Pulsed Wire Evaporation Method (전기선폭발법에 의해 카본 코팅된 Cu 나노분말의 제조 및 특성 연구)

  • Lee, H.M.;Park, J.H.;Hong, S.M.;Uhm, Y.R.;Rhee, C.K.
    • Journal of Powder Materials
    • /
    • v.16 no.4
    • /
    • pp.243-248
    • /
    • 2009
  • Carbon-coated Cu nanopowders with core/shell structure have been successfully fabricated by pulsed wire evaporation (PWE) method, in which a mixed gas of Ar/$CH_4$ (10 vol.%) was used as an ambient gas. The characterization of the samples was carried out using x-ray diffraction (XRD), scanning electron microscope (SEM), and high resolution transmission electron microscope (HRTEM). It was found that the nanoparticles show a spherical morphology with the size ranging of 10-40 nm and are covered with graphite layers of 2-4 nm. When oxygen-passivated Cu nanopowders were annealed under flowing argon gas (600 and 800$^{\circ}C$), the crystallinity of $Cu_2O$ phase and the particle size gradually increased. On the other hand, carbon-coated Cu nanopowders remained similar to as-prepared case with no additional oxide or carbide phases even after the annealing, indicating that the metal nanoparticles are well protected by the carbon-coating layers.