DOI QR코드

DOI QR Code

Corrosion behavior of refractory metals in liquid lead at 1000 ℃ for 1000 h

  • Xiao, Zunqi (Institute of Nuclear Energy Safety Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences) ;
  • Liu, Jing (Institute of Nuclear Energy Safety Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences) ;
  • Jiang, Zhizhong (Institute of Nuclear Energy Safety Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences) ;
  • Luo, Lin (Institute of Nuclear Energy Safety Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences)
  • 투고 : 2021.08.28
  • 심사 : 2021.12.12
  • 발행 : 2022.06.25

초록

Lead-based fast reactor (LFR) has become one of the most promising reactors for Generation IV nuclear systems. A developing trend of LFR is high efficiency, along with operation temperatures up to 800 ℃ or even higher. One of key issues in the high-efficiency LFR is corrosion of cladding materials with lead at high temperatures. In this study, corrosion behavior of some refractory metals (Nb, Nb521, and Mo-0.5La) was investigated in static lead at 1000 ℃ for 1000 h. The results showed that Nb and Nb521 exhibited an intense dissolution corrosion with obvious lead penetration after corrosion, and lead penetration extended along the grain boundaries of the specimens. Furthermore, Nb521 showed a better corrosion resistance than that of Nb as a result of the elements of W and Mo included in Nb521. Mo-0.5La showed much better corrosion resistance than that of Nb and Nb521, and no lead penetration could be observed. However, an etched morphology appeared on the surface of Mo-0.5La, indicating the occurrence of corrosion to a certain degree. The results indicate that Mo-0.5La is compatible with lead up to 1000 ℃. While Nb and Nb alloys might be not compatible with lead for high-efficiency LFR at such high temperatures.

키워드

과제정보

This work was funded with the National Natural Science Foundation of China with Grant Nos. 51901224, 51501185, 51401204, and Youth Innovation Promotion Association of Chinese Academy of Sciences with Grant No. 2021449.

참고문헌

  1. A. Alemberti, V. Smirnov, C.F. Smith, M. Takahashi, Overview of lead-cooled fast reactor activities, Prog. Nucl. Energy 77 (2014) 300-307. https://doi.org/10.1016/j.pnucene.2013.11.011
  2. M. Frogheri, A. Alemberti, L. Mansani, The lead fast reactor: demonstrator (ALFRED) and ELFR design, in: International Conference on Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios (FR13), 2013.
  3. C.F. Smith, W.G. Halsey, N.W. Brown, J.J. Sienicki, A. Moisseytsev, D.C. Wade, SSTAR: the US lead-cooled fast reactor (LFR), J. Nucl. Mater. 376 (2008) 255-259. https://doi.org/10.1016/j.jnucmat.2008.02.049
  4. Y. Wu, Y. Bai, Y. Song, Q. Huang, Z. Zhao, L. Hu, Development strategy and conceptual design of China lead-based research reactor, Ann. Nucl. Energy 87 (2016) 511-516. https://doi.org/10.1016/j.anucene.2015.08.015
  5. T.R. Allen, D.C. Crawford, Lead-cooled fast reactor systems and the fuels and materials challenges, Sci. Technol. Nucl. Install. (2007) 1-11, 2007.
  6. V. Tsisar, C. Schroer, O. Wedemeyer, A. Skrypnik, J. Konys, Long-term corrosion of austenitic steels in flowing LBE at 400 ℃ and 10-7 mass% dissolved oxygen in comparison with 450 and 550 ℃, J. Nucl. Mater. 468 (2016) 305-312. https://doi.org/10.1016/j.jnucmat.2015.09.027
  7. C. Schroer, J. Konys, Quantification of the long-term performance of steels T91 and 316L in oxygen-containing flowing lead-bismuth eutectic at 550℃, J. Eng. Gas Turbines Power 132 (2010), 082901. https://doi.org/10.1115/1.4000364
  8. V. Tsisar, S. Gavrilov, C. Schroer, E. Stergar, Long-term corrosion performance of T91 ferritic/martensitic steel at 400 ℃ in flowing Pb-Bi eutectic with 2 × 10-7mass% dissolved oxygen, Corrosion Sci. 174 (2020) 108852. https://doi.org/10.1016/j.corsci.2020.108852
  9. L. Luo, Z. Jiang, Z. Xiao, Q. Huang, Cracking and exfoliation behavior of oxide scale on T91 steel under different tensile stresses in oxygen-controlled lead-bismuth eutectic at 550℃, Corrosion Sci. 183 (2021) 109324. https://doi.org/10.1016/j.corsci.2021.109324
  10. X. Gong, P. Marmy, B. Verlinden, M. Wevers, M. Seefeldt, Low cycle fatigue behavior of a modified 9Cr-1Mo ferritic-martensitic steel in lead-bismuth eutectic at 350 ℃ - effects of oxygen concentration in the liquid metal and strain rate, Corrosion Sci. 94 (2015) 377-391. https://doi.org/10.1016/j.corsci.2015.02.022
  11. C. Li, X. Fang, Q. Wang, M. Shen, H. Wang, X. Zeng, Y. Liu, G. Meng, A synergy of different corrosion failure modes pertaining to T91 steel impacted by extreme leadebismuth eutectic flow pattern, Corrosion Sci. 180 (2020) 109214. https://doi.org/10.1016/j.corsci.2020.109214
  12. J. Liu, Z. Jiang, S. Tian, Q. Huang, Y. Liu, Stress corrosion behavior of T91 steel in static leadebismuth eutectic at 480℃, J. Nucl. Mater. 468 (2016) 299-304. https://doi.org/10.1016/j.jnucmat.2015.09.032
  13. X. Gong, J. Chen, C. Xiang, Z. Yu, H. Gong, Y. Yin, A comparative study on liquid metal embrittlement susceptibility of three FeCrAl ferritic alloys in contact with liquid lead-bismuth eutectic at 350℃, Corrosion Sci. 183 (2021) 109346. https://doi.org/10.1016/j.corsci.2021.109346
  14. A. Jianu, R. Fetzer, A. Weisenburger, M. Bruns, A. Heinzel, P. Hosemann, G. Mueller, Stability domain of alumina thermally grown on Fe-Cr-Al-based model alloys and modified surface layers exposed to oxygen-containing molten Pb, J. Nucl. Mater. 470 (2016) 68-75. https://doi.org/10.1016/j.jnucmat.2015.12.009
  15. H. Shi, R. Fetzer, C. Tang, D. Szabo, G. Mueller, The influence of Y and Nb addition on the corrosion resistance of Fe-Cr-Al-Ni model alloys exposed to oxygen-containing molten Pb, Corrosion Sci. 179 (2020) 109152.
  16. H. Shi, A. Jianu, R. Fetzer, D.V. Szabo, S. Schlabach, A. Weisenburger, C. Tang, A. Heinzel, F. Lang, G. Muller, Compatibility and microstructure evolution of Al-Cr-Fe-Ni high entropy model alloys exposed to oxygen-containing molten lead, Corrosion Sci. 189 (2021) 109593. https://doi.org/10.1016/j.corsci.2021.109593
  17. S. Takaya, T. Furukawa, G. Muller, A. Heinzel, A. Jianu, A. Weisenburger, K. Aoto, M. Inoue, T. Okuda, F. Abe, S. Ohnuki, T. Fujisawa, A. Kimura, Alcontaining ODS steels with improved corrosion resistance to liquid leadebismuth, J. Nucl. Mater. 428 (2012) 125-130. https://doi.org/10.1016/j.jnucmat.2011.06.046
  18. V. Tsisar, O. Yeliseyeva, J. Konys, Oxidation/dissolution of ferritic ODS steels in static lead with various oxygen content at 650 ℃, Nucl. Eng. Des. 280 (2014) 673-679. https://doi.org/10.1016/j.nucengdes.2014.03.001
  19. O. Yeliseyeva, V. Tsisar, Z. Zhou, Corrosion behavior of Fe-14Cr-2W and Fe-9Cr-2W ODS steels in stagnant liquid Pb with different oxygen concentration at 550 and 650℃, J. Nucl. Mater. 442 (2013) 434-443. https://doi.org/10.1016/j.jnucmat.2013.07.040
  20. R. Fetzer, A. Weisenburger, A. Jianu, G. Muller, Oxide scale formation of modified FeCrAl coatings exposed to liquid lead, Corrosion Sci. 55 (2012) 213-218. https://doi.org/10.1016/j.corsci.2011.10.019
  21. A. Heinzel, A. Weisenburger, G. Muller, Corrosion behavior of austenitic steels in liquid lead bismuth containing 10-6 wt% and 10-8 wt% oxygen at 400-500 ℃, J. Nucl. Mater. 448 (2014) 163-171. https://doi.org/10.1016/j.jnucmat.2014.01.046
  22. L. Martinelli, F. Balbaud-Celerier, G. Picard, G. Santarini, Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid PbeBi eutectic alloy (Part III), Corrosion Sci. 50 (2008) 2549-2559. https://doi.org/10.1016/j.corsci.2008.06.049
  23. A.K. Rivai, M. Takahashi, Compatibility of surface-coated steels, refractory metals and ceramics to high temperature lead-bismuth eutectic, Prog. Nucl. Energy 50 (2008) 560-566. https://doi.org/10.1016/j.pnucene.2007.11.081
  24. A.K. Rivai, M. Takahashi, Corrosion investigations of Al-Fe-coated steels, high Cr steels, refractory metals and ceramics in lead alloys at 700 ℃, J. Nucl. Mater. 398 (2010) 146-152. https://doi.org/10.1016/j.jnucmat.2009.10.025
  25. W. Cairang, S. Ma, X. Gong, Y. Zeng, H. Yang, D. Xue, Y. Qin, X. Ding, J. Sun, Oxidation mechanism of refractory Molybdenum exposed to oxygen-saturated lead-bismuth eutectic at 600 ℃, Corrosion Sci. 179 (2020) 109132.
  26. J.R. Distefano, L.D. Chitwood, Oxidation and its effects on the mechanical properties of Nb-1Zr, J. Nucl. Mater. 295 (2001) 42-48. https://doi.org/10.1016/S0022-3115(01)00495-0
  27. J.R. Distefano, B.A. Pint, J.H. Devan, Oxidation of refractory metals in air and low pressure oxygen gas, Int. J. Refract. Metals Hard Mater. 18 (2000) 237-243. https://doi.org/10.1016/S0263-4368(00)00026-3
  28. Organization for Economic Co-operation and Development (OECD), Handbook on Technologies-2015 Edition, OECD/NEA Nuclear Science Committee, 2015.
  29. F. Shunk, Constitution of Binary Alloys, McGraw-Hill, New York, 1969.
  30. L. Brewer, R. Lamoreaux, Molybdenum physico-chemical properties of its compounds and alloys, in: L. Brewer (Ed.), Atomic Energy Review, Special Issue No. 7, IAEA, Vienna, 1980, p. 295.
  31. K. Lambrinou, E. Charalampopoulou, V. Tom, R. Delville, D. Schryvers, Dissolution corrosion of 316L austenitic stainless steels in contact with static liquid lead-bismuth eutectic (LBE) at 500 ℃, J. Nucl. Mater. 490 (2017) 9-27. https://doi.org/10.1016/j.jnucmat.2017.04.004