• Title/Summary/Keyword: Nuclear migration

Search Result 220, Processing Time 0.023 seconds

Numerical analysis of melt migration and solidification behavior in LBR severe accident with MPS method

  • Wang, Jinshun;Cai, Qinghang;Chen, Ronghua;Xiao, Xinkun;Li, Yonglin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.162-176
    • /
    • 2022
  • In Lead-based reactor (LBR) severe accident, the meltdown and migration inside the reactor core will lead to fuel fragment concentration, which may further cause re-criticality and even core disintegration. Accurately predicting the migration and solidification behavior of melt in LBR severe accidents is of prime importance for safety analysis of LBR. In this study, the Moving Particle Semi-implicit (MPS) method is validated and used to simulate the migration and solidification behavior. Two main surface tension models are validated and compared. Meanwhile, the MPS method is validated by the L-plate solidification test. Based on the improved MPS method, the migration and solidification behavior of melt in LBR severe accident was studied furthermore. In the Pb-Bi coolant, the melt flows upward due to density difference. The migration and solidification behavior are greatly affected by the surface tension and viscous resistance varying with enthalpy. The whole movement process can be divided into three stages depending on the change in velocity. The heat transfer of core melt is determined jointly by two heat transfer modes: flow heat transfer and solid conductivity. Generally, the research results indicate that the MPS method has unique advantage in studying the migration and solidification behavior in LBR severe accident.

AN ANALYSIS OF THE EFFECT OF HYDRAULIC PARAMETERS ON RADIONUCLIDE MIGRATION IN AN UNSATURATED ZONE

  • Kim, Gye-Nam;Moon, Jei-Kwon;Lee, Kune-Woo
    • Nuclear Engineering and Technology
    • /
    • v.42 no.5
    • /
    • pp.562-567
    • /
    • 2010
  • A One-Dimensional Water Flow and Contaminant Transport in Unsaturated Zone (FTUNS) code has been developed in order to interpret radionuclide migration in an unsaturated zone. The pore-size distribution index (n) and the inverse of the air-entry value ($\alpha$) for an unsaturated zone were measured by KS M ISO 11275 method. The hydraulic parameters of the unsaturated soil are investigated by using soil from around a nuclear facility in Korea. The effect of hydraulic parameters on radionuclide migration in an unsaturated zone has been analyzed. The higher the value of the n-factor, the more the cobalt concentration was condensed. The larger the value of $\alpha$-factor, the faster the migration of cobalt was and the more aggregative the cobalt concentration was. Also, it was found that an effect on contaminant migration due to the pore-size distribution index (n) and the inverse of the air-entry value ($\alpha$) was minute. Meanwhile, migrations of cobalt and cesium are in inverse proportion to the Freundich isotherm coefficient. That is to say, the migration velocity of cobalt was about 8.35 times that of cesium. It was conclusively demonstrated that the Freundich isotherm coefficient was the most important factor for contaminant migration.

Family Migration Characteristics and Types of North Korean Defectors (북한이탈주민의 가족이주 특성과 유형)

  • Chin, Meejung;Kim, Sangha
    • Human Ecology Research
    • /
    • v.56 no.3
    • /
    • pp.317-330
    • /
    • 2018
  • Objectives: This study explores the characteristics of family migration for North Korean defectors and classifies family migration by examining who initiated the migration and who followed. Method: We analyzed the family migration using detailed stories from fifty-five North Korean defectors who were interviewed between 2005 and 2011. Results: We found that 43 out of 55 cases were family migration and the remaining 12 cases were single person migration. We also found several characteristics typical of migration. First, family migration followed the process of step migration, which indicated a serial migration in numbers. Second, migration relied heavily on informal social networks. Finally, the process of earlier migration by North Koreans was incidental and unexpected; however, unexpectedness has diminished in recent migration. Looking at who initiated the migration, the most common type was 'mother-initiated' cases (14 cases) followed by 'child-initiated' cases (10 cases). The third most common type was 'mother-child accompanied' cases (7 cases). The migration process was various; however the most common type was when a married woman initiated the family migration process. This is most likely because married women have the responsibility to support families in the informal economy of North Korea. According to the range of family migrated, the most common type was 'nuclear-family only' cases (22 cases) followed by 'maternal extended family migration' cases (12 cases). Conclusions: The findings of this study provide information on the family dynamics of North Korean defectors.

Ultrastructural Aspects of Nuclear Behaviors of Pleurotus ostreatus - Behaviors of Astral Microtubules During Hyphal Development - (느타리버섯균의 핵의 동태에 관한 미세구조적 연구 -균사분화중의 성상체 미세소관에 관한 연구-)

  • Yoon, Kwon-S.
    • The Korean Journal of Mycology
    • /
    • v.24 no.1 s.76
    • /
    • pp.1-7
    • /
    • 1996
  • Premitotic, mitotic and postmitotic nuclei in the dikaryotic somatic hyphae of Pleurotus ostreatus, the oyster mushroom fungus were ultrastucturally examined using chemical fixation and freeze-substitution process, and the behaviors of astral microtubules associated with these nuclei were closely analyzed. Electron microscopic examinations revealed that astral microtubules are significantly abundant when the nuclei are in the stage of migration and at the stage of migration, the separation of spindle pole body occurs. Such an abundancy of astral microtubules in premitotic migrating nuclei is well contrasted with mitotic and postmitotic nuclei with much fewer astral microtubules and it should be noted that neither of these latter classes of nuclei exhibits the separation of the spindle pole body. It is remarkable that the postmitotic nuclei that are believed to migrate actively are associated with the astral microtubules that are less in numbers and length. During all the stages of nuclear division, astral microtubules are invariably radiating from the spindle pole bodies and nucleolus remains within the nuclear envelope of dividing nuclei throughout the division. The functions of astral microtubules developed during the nuclear division as well as the nuclear migration and separation of the spindle pole body were closely examined.

  • PDF

Swelling and hydraulic characteristics of two grade bentonites under varying conditions for low-level radioactive waste repository design

  • Chih-Chung Chung;Guo-Liang Ren;I-Ting Chen;Che-Ju, Cuo;Hao-Chun Chang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1385-1397
    • /
    • 2024
  • Bentonite is a recommended material for the multiple barriers in the final disposal of low-level radioactive waste (LLW) to prevent groundwater intrusion and nuclear species migration. However, after drying-wetting cycling during the repository construction stage and ion exchange with the concrete barrier in the long-term repository, the bentonite mechanical behaviors, including swelling capacity and hydraulic conductivity, would be further influenced by the groundwater intrusion, resulting in radioactive leakage. To comprehensively examine the factors on the mechanical characteristics of bentonite, this study presented scenarios involving MX-80 and KV-1 bentonites subjected to drying-wetting cycling and accelerated ion migration. The experiments subsequently measured free swelling, swelling pressure, and hydraulic conductivity of bentonites with intrusions of seawater, high pH, and low pH solutions. The results indicated that the solutions caused a reduction in swelling volume and pressure, and an increase in hydraulic conductivity. Specifically, the swelling capability of bentonite with drying-wetting cycling in the seawater decreased significantly by 60%, while hydraulic conductivity increased by more than three times. Therefore, the study suggested minimizing drying-wetting cycling and preventing seawater intrusion, ensuring a long service life of the multiple barriers in the LLW repository.

Computational study of protactinium incorporation effects in Th and Th compounds

  • Daroca, D. Perez;Llois, A.M.;Mosca, H.O.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2285-2289
    • /
    • 2020
  • Protactinium contamination is a mayor issue in the thorium fuel cycle. We investigate, in this work, the consequences of Pa incorporation in vacancy defects and interstitials in Th, ThC and ThN. We calculate charge transfers and lattice distortions due to these incorporations as well as migration paths and energies involved in the diffusion of Pa.

PRELIMINARY MODELING FOR SOLUTE TRANSPORT IN A FRACTURED ZONE AT THE KOREA UNDERGROUND RESEARCH TUNNEL (KURT)

  • Park, Chung-Kyun;Lee, Jae-Kwang;Baik, Min-Hoon;Jeong, Jong-Tae
    • Nuclear Engineering and Technology
    • /
    • v.44 no.1
    • /
    • pp.79-88
    • /
    • 2012
  • Migration tests were performed with conservative tracers in a fractured zone that had a single fracture of about 2.5 m distance at the KURT. To interpret the migration of the tracers in the fractured rock, a solute transport model was developed. A two dimensional variable aperture channel model was adopted to describe the fractured path and hydrology, and a particle tracking method was used for solute transport. The simulation tried not only to develop a migration model of solutes for open flow environments but also to produce ideas for a better understanding of solute behaviours in indefinable fracture zones by comparing them to experimental results. The results of our simulations and experiments are described as elution and breakthrough curves, and are quantified by momentum analysis. The main retardation mechanism of nonsorbing tracers, including matrixdiffusion, was investigated.