• Title/Summary/Keyword: Nuclear magnetic resonance (Nmr)

Search Result 543, Processing Time 0.024 seconds

Pressure titration of the monomeric variant of transthyretin

  • Bokyung Kim;Jin Hae Kim
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.27 no.1
    • /
    • pp.1-4
    • /
    • 2023
  • Transthyretin (TTR) is an indispensable transporter protein of thyroxine and a retinol molecule in humans. TTR has a stable homo-tetrameric structure in its native state, while upon dissociation into monomers, it becomes aggregation-prone and can form an amyloid fibril. Although the amyloidogenic propensity of TTR has been known and investigated since the late 1990s, the structural information regarding TTR's amyloidogenic species is still elusive. Here, we employed high-pressure nuclear magnetic resonance (HP-NMR) approaches on the monomeric variant of TTR (TTR[F87M/L110M]; M-TTR) and observed that it experiences a two-step transition in response to the pressurized condition. Our study demonstrated that M-TTR in an ambient condition has heterogeneous structural features, which is likely related to the amyloidogenic propensity of TTR.

The New Evaluation Basis of Potable Water (물에 대한 새로운 평가)

  • 문승주
    • Journal of the Korean Professional Engineers Association
    • /
    • v.35 no.4
    • /
    • pp.24-28
    • /
    • 2002
  • For a long time, we use the chemical analysis only for the evaluation of potable water. but recently water which Is good or not for the vital body should be proposed to take additional new evaluation technology Nuclear Magnetic Resonance(NMR). The optimum value of NMR data should be below 100Hz of Half width.

  • PDF

Chemical Structural Features of Humic-like Substances (HULIS) in Urban Atmospheric Aerosols Collected from Central Tokyo with Special Reference to Nuclear Magnetic Resonance Spectra

  • Katsumi, Naoya;Miyake, Shuhei;Okochi, Hiroshi
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.2
    • /
    • pp.153-164
    • /
    • 2018
  • We measured $^1H$ and $^{13}C$ nuclear magnetic resonance (NMR) spectra of Humic-like substances (HULIS) in urban atmospheric aerosols isolated by diethylaminoethyl (DEAE) and hydrophilic-lipophilic balance (HLB) resin to characterize their chemical structure. HULIS isolated by DEAE resin were characterized by relatively high contents of aromatic protons and relatively low contents of aliphatic protons in comparison with HULIS isolated by HLB resin, while the contents of protons bound to oxygenated aliphatic carbon atoms were similar. These results were consistent with the results of the $^{13}C$ NMR analysis and indicate that hydrophobic components were more selectively adsorbed onto HLB, while DEAE resins selectively retained aromatic carboxylic acids. Furthermore, we demonstrated that the chemical structural features of HULIS were significantly different between spring and summer samples and that these disparities were reflective of their different sources. The estimated concentrations of HULIS in spring were found to be regulated by vehicle emissions and pollen dispersion, while the behavior of HULIS in summer was similar to photochemical oxidant and nitrogen dioxide concentrations. The proportion of aliphatic protons for summer samples was higher than that for spring samples, while the proportion of aromatic protons for summer samples was lower than that for spring samples. These seasonal changes of the chemical structure may also involve in their functional expression in the atmosphere.

Comparison of metabolic profiling of Daphnia magna between HR-MAS NMR and solution NMR techniques

  • Kim, Seonghye;Lee, Sujin;Lee, Wonho;Lee, Yujin;Choi, Juyoung;Lee, Hani;Li, Youzhen;Ha, Seulbin;Kim, Suhkmann
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.25 no.2
    • /
    • pp.12-16
    • /
    • 2021
  • Daphnia magna is used as target organism for environmental metabolomics. The metabolome of D. magna was studied with NMR spectroscopy. Most studies used the extract of D. magna, but the reproducibility cannot be obtained using extracted sample. In this study, lyophilized D. magna samples were analyzed with two different 1H NMR techniques, HR-MAS on intact tissues and solution NMR on extracted tissues. Samples were measured three times using 600 MHz NMR spectrometer. Metabolite extraction required more than twice as many D. magna, but the metabolite intensity was lower in solution NMR. In the spectra of HR-MAS NMR, the lipid signal was observed, but they did not interfere with metabolite profiling. We also confirmed the effect of swelling time on signal intensities of metabolites in HR-MAS NMR, and the results suggest that appropriate swelling should be used in lyophilized D. magna to improve the accuracy of metabolite profiles.

NMR-based Metabolomic Responses of Zebrafish (Danio Rerio) by Fipronil Exposure

  • Lee, Sujin;Oh, Sangah;Kim, Seonghye;Lee, Wonho;Choi, Juyoung;Lee, Hani;Lee, Yujin;Kim, Suhkmann
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.24 no.4
    • /
    • pp.104-116
    • /
    • 2020
  • Fipronil, the phenylpyrazole insecticide, is effective and used in various fields. Especially, fipronil was reliable because it was known to be specific on invertebrate animals than vertebrate animals including mammals. However, fipronil had potential risks that affect vertebrate animals as it blocks the gamma-aminobutyric acid (GABA) receptors that also exists in vertebrates as well as invertebrates. Therefore, it was necessary that harmful effects of fipronil on vertebrates are clarified. For this purpose, the zebrafish (Danio rerio) were used on behalf of vertebrate animals in present study. The zebrafish were exposed to 5 ㎍/L, 25 ㎍/L, and 50 ㎍/L of fipronil during 12, 24 and 72 hours. To closely observe toxic process, 12 hours and 24 hours of additional time point were set in the exposure test. Nuclear magnetic resonance (NMR)-based metabolomics is an approach to detect metabolic changes in organism resulted from external stimuli. In this study, NMR-based metabolomics showed the metabolic changes in zebrafish caused by fipronil exposure. Metabolic analysis revealed that fipronil interfered with energy metabolism and decreased the antioxidant ability in zebrafish. Antioxidant ability decline was remarkable at high exposure concentration. In addition, metabolic analysis results over time suggested that reactions for alleviating the excessive nerve excitation occurred in zebrafish after fipronil exposure. Through this study, it was elucidated that the adverse effects of fipronil on vertebrate animals are evident. The risk of fipronil on vertebrates can be no longer ignored. Moreover, this study has a meaning of practically necessary research for organism by examining the effects of fipronil at low concentrations existed in real environment.

NMR Relaxometry of Water in Set Yogurt During Fermentation

  • Mok, Chul-Kyoon;Qi, Jinning;Chen, Paul;Ruan, Roger
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.895-898
    • /
    • 2008
  • The mobility of water in set yogurt during fermentation was studied using nuclear magnetic resonance (NMR) relaxometry. The spin-spin relaxation was analyzed using a 2-fraction model, resulting in 2 spin-spin relaxation time constants $T_{21}$ and $T_{22}$. Both $T_{21}$ and $T_{22}$ exhibited rapid changes between 2 and 4 hr of fermentation, coinciding with the drop in pH and the rise in lactic acid bacteria count. The spin-lattice relaxation time $T_1$ increased over the fermentation period. Both $T_1$ and $T_2$ showed an increase in the mobility of water upon gel formation during fermentation. Water redistribution within the gel matrix due to casein aggregation and structure forming may be responsible for the changes in mobility.

Determination of Differences in the Nonvolatile Metabolites of Pine-Mushrooms (Tricholoma matsutake Sing.) According to Different Parts and Heating Times Using $^1H$ NMR and Principal Component Analysis

  • Cho, In-Hee;Kim, Young-Suk;Lee, Ki-Won;Choi, Hyung-Kyoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.10
    • /
    • pp.1682-1687
    • /
    • 2007
  • The differences in the nonvolatile metabolites of pine-mushrooms (Tricholoma matsutake Sing.) according to different parts and heating times were analyzed by applying principal component analysis (PCA) to $^1H$ nuclear magnetic resonance (NMR) spectroscopy data. The $^1H$ NMR spectra and PCA enabled the differences of nonvolatile metabolites among mushroom samples to be clearly observed. The two parts of mushrooms could be easily discriminated based on PC 1, and could be separated according to different heattreated times based on PC 3. The major peaks in the $^1H$ NMR spectra that contributed to differences among mushroom samples were assigned to trehalose, succinic acid, choline, leucine/isoleucine, and alanine. The content of trehalose was higher in the pileus than in the stipe of all mushroom samples, whereas succinic acid, choline, and leucine/isoleucine were the main components in the stipe. Heating resulted in significant losses of alanine and leucine/isoleucine, whereas succinic acid, choline, and trehalose were the most abundant components in mushrooms heat-treated for 3 min and 5 min, respectively.

NMR Solvent Peak Suppression by Piecewise Polynomial Truncated Singular Value Decomposition Methods

  • Kim, Dae-Sung;Lee, Hye-Kyoung;Won, Young-Do;Kim, Dai-Gyoung;Lee, Young-Woo;Won, Ho-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.7
    • /
    • pp.967-970
    • /
    • 2003
  • A new modified singular value decomposition method, piecewise polynomial truncated SVD (PPTSVD), which was originally developed to identify discontinuity of the earth's radial density function, has been used for large solvent peak suppression and noise elimination in nuclear magnetic resonance (NMR) signal processing. PPTSVD consists of two algorithms of truncated SVD (TSVD) and L₁ problems. In TSVD, some unwanted large solvent peaks and noise are suppressed with a certain soft threshold value, whereas signal and noise in raw data are resolved and eliminated in L₁ problems. These two algorithms were systematically programmed to produce high quality of NMR spectra, including a better solvent peak suppression with good spectral line shapes and better noise suppression with a higher signal to noise ratio value up to 27% spectral enhancement, which is applicable to multidimensional NMR data processing.

Nucleus-phonon interactions of MCsSO4 (M = Na, K, or Rb) single crystals studied using spin-lattice relaxation time

  • Choi, Jae Hun;Kim, Nam Hee;Lim, Ae Ran
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.18 no.1
    • /
    • pp.15-23
    • /
    • 2014
  • The structural properties and relaxation processes of $MCsSO_4$ (M = Na, K, or Rb) crystals were investigated by measuring the NMR spectra and spin-lattice relaxation rates $1/T_1$ of their $^{23}Na$, $^{39}K$, $^{87}Rb$, and $^{133}Cs$ nuclei. According to the NMR spectra, the $MCsSO_4$ crystals contain two crystallographically inequivalent sites each for the M and Cs ions. Further, the relaxation rates of all these nuclei do not change significantly over the investigated temperature range, indicating that no phase transitions occur in these crystals in this range. The variations in the $1/T_1$ values of the $^{23}Na$, $^{39}K$, $^{87}Rb$, and $^{133}Cs$ nuclei in these three crystals with increasing temperature are approximately proportional to $T^2$, indicating that Raman processes may be responsible for the relaxation. Therefore, for nuclear quadrupole relaxation of the $^{23}Na$, $^{39}K$, $^{87}Rb$, and $^{133}Cs$ nuclei, Raman processes with n = 2 are more effective than direct processes.