References
- Baduel, C., Voison, D., Jaffrezo, J.L. (2009) Comparison of analytical methods for Humic Like Substances (HULIS) measurements in atmospheric particles. Atmospheric Chemistry and Physics 9, 5949-5962. https://doi.org/10.5194/acp-9-5949-2009
- Baduel, C., Voison, D., Jaffrezo, J.L. (2010) Seasonal variations of concentrations and optical properties of water soluble HULIS collected in urban environments. Atmospheric Chemistry and Physics 10, 4085-4095. https://doi.org/10.5194/acp-10-4085-2010
- Chalbot, M.-C.G., Brown, J., Chitranshi, P., Gamboa da Costa, G., Pollock, E.D., Kavouras, I.G. (2014) Functional characterization of the water-soluble organic carbon of size-fractionated aerosol in the southern Mississippi Valley. Atmospheric Chemistry and Physics 14, 6075-6088. https://doi.org/10.5194/acp-14-6075-2014
- Chalbot, M.-C.G., Kavouras, I.G. (2014) Nuclear magnetic resonance spectroscopy for determining the functional content of organic aerosols: A review. Environmental Pollution 191, 232-249. https://doi.org/10.1016/j.envpol.2014.04.034
-
Chalbot, M.-C.G., Chitranshi, P., Costa, G.G., Pollock, E., Kavouras, I.G. (2015) Characterization of watersoluble organic matter in urban aerosol by
$^{1}H$ -NMR spectroscopy. Atmospheric Environment 128, 235-245. - Decesari, S., Facchini, M.C., Fuzzi, S., Tagliavini, E. (2000) Characterization of water-soluble organic compounds in atmospheric aerosol: a new approach. Journal of Geophysical Research: Atmospheres 105, 1481-1489. https://doi.org/10.1029/1999JD900950
- Decesari, S., Mircea, M., Cavalli, F., Fuzzi, S., Moretti, F., Tagliavini, E., Facchini, M.C. (2007) Source attribution of water-soluble organic aerosol by nuclear magnetic resonance spectroscopy. Environmental Science & Technology 41, 2479-2484. https://doi.org/10.1021/es061711l
- Duarte, R.M.B.O., Duarte, A.C. (2005) Application of non-ionic solid sorbents (XAD Resins) for the isolation and fractionation of water-soluble organic compounds from atmospheric aerosols. Journal of Atmospheric Chemistry 51, 79-93. https://doi.org/10.1007/s10874-005-8091-x
- Duarte, R.M.B.O., Pio, C.A., Duarte, A.C. (2005) Spectroscopic study of the water-soluble organic matter isolated from atmospheric aerosols collected under different atmospheric conditions. Analytica Chimica Acta 530, 7-14. https://doi.org/10.1016/j.aca.2004.08.049
- Duarte, R.M.B.O., Santos, B.H.E., Pio, C.A., Duarte, A.C. (2007) Comparison of structural features of watersoluble organic matter from atmospheric aerosols with those of aquatic humic substances. Atmospheric Environment 41, 8100-8113. https://doi.org/10.1016/j.atmosenv.2007.06.034
-
Duarte, R.M.B.O., Freire, S.M.S.C., Duarte, A.C. (2015) Investigation the water-soluble organic functionality of urban aerosols using two-dimensional of solid-state
$^{13}C$ NMR and FTIR spectral data. Atmospheric Environment 116, 245-252. https://doi.org/10.1016/j.atmosenv.2015.06.043 -
Environmental Bureau of the Tokyo Metropolitan Government (2011) Release Inventory of
$PM_{2.5}$ etc. https://www.kankyo.metro.tokyo.jp/air/attachement/013_inbentori.pdf (in Japanese, 9 February 2017) - Fan, X., Song, J., Peng, P. (2012) Comparison of isolation and quantification methods to measure humic-like substances (HULIS) in atmospheric particles. Atmospheric Environment 60, 366-374. https://doi.org/10.1016/j.atmosenv.2012.06.063
-
Fan, X., Song, J., Peng, P. (2013) Comparative study for separation of atmospheric humic-like substance (HULIS) by ENVI-18, HLB, XAD-8 and DEAE sorbents: elemental composition, FT-IR,
$^1H NMR$ and off-line thermochemolysis with tetramethylammonium hydroxide (TMAH). Chemosphere 93, 1710-1719. https://doi.org/10.1016/j.chemosphere.2013.05.045 - Feczko, T., Puxbaum, H., Kasper-Giebl, A., Handler, M., Limbeck, A., Gelencser, A., Pio, C., Preunkert, S., Legrand, M. (2007) Determination of water and alkaline extractable atmospheric humic-like substances with the TU Vienna HULIS analyzer in samples from six background sites in Europe. Journal of Geophysical Research: Atmospheres 112, D23.
-
Fujitake, N., Kawahigashi, M. (1999)
$^{13}C$ NMR spectra and elemental composition of fractions with different particle sizes from an Andosol humic acid. Soil Science and Plant Nutrition 45, 359-366. https://doi.org/10.1080/00380768.1999.10409350 - Fujitake, N., Kodama, H., Nagao, S., Tsuda, K., Yonebayashi, K. (2009) Chemical properties of fulvic acids isolated from Lake Biwa, a clear water system in Japan, Humic substances research 5/6, 45-53.
- Gelencser, A., Hoffer, A., Krivacsy, Z., Kiss, G., Molnar, A., Meszaros, E. (2002) On the possible origin of humic matter in fine continental aerosol. Journal of Geophysical Research: Atmospheres 107, D12.
- Graber, E.R., Rudich, Y. (2006) Atmospheric HULIS: How humic-like are they? A comprehensive and critical review. Atmospheric Chemistry and Physics 6, 729-753. https://doi.org/10.5194/acp-6-729-2006
- Havers, N., Burba, P., Lambert, J., Klockow, D. (1998) Spectroscopic characterization of humic-like substances in airborne particulate matter. Journal of Atmospheric Chemistry 29, 45-54. https://doi.org/10.1023/A:1005875225800
- Hedges, J.I., Eglinton, G., Hatcher, P.G., Kirchman, D.L., Arnosti, C., Derenne, S., Evershed, R.P., Kogel-Knabner, I., de Leeuw, J.W., Littke, R., Michaelis, W., Rullkotter, J. (2000) The molecularly-uncharacterized component of nonliving organic matter in natural environments. Organic Geochemistry 31, 945-958. https://doi.org/10.1016/S0146-6380(00)00096-6
- Hiraide, M., Shima, T., Kawaguchi, H. (1994) Separation and determination of dissolved and particulate humic substances in river water. Microchimica Acta 113, 269-276. https://doi.org/10.1007/BF01243617
- Hoffer, A., Gelencer, A., Guyon, P., Schmid, O., Frank, G.P., Artaxo, P., Andreae, M.O. (2006) Optical properties of humic-like substances (HULIS) in biomassburning aerosols. Atmospheric Chemistry and Physics 6, 3563-3570. https://doi.org/10.5194/acp-6-3563-2006
- Katsumi, N., Yonebayashi, K., Okazaki, M., Nishiyama, S., Nishi, T., Hosaka, A., Watanabe, C. (2016) Characterization of soil organic matter with different degree of humification using evolved gas analysis-mass spectrometry. Talanta 155, 28-37. https://doi.org/10.1016/j.talanta.2016.04.007
-
Kawahigashi, M., Fujitake, N., Takahashi, T. (1996) Structural information obtained from spectral analysis (UVVIS, IR,
$^1H$ NMR) of particle size fractions in two humic acids. Soil Science and Plant Nutrition 42, 355-360. - Kiss, G., Varga, B., Galambos, I., Ganszky, I. (2002) Characterization of Water-Soluble Organic Matter Isolated from Atmospheric Fine Aerosol. Journal of Geophysical Research 107, 8339.
- Kiss, G., Tombacz, E., Varga, B., Alsberg, T., Persson, L. (2003) Estimation of the average molecular weight of humic-like substances isolated from fine atmospheric aerosol. Atmospheric Environment 37, 3783-3794. https://doi.org/10.1016/S1352-2310(03)00468-0
- Kogel-Knabner, I. (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biology & Biochemistry 34, 139-162. https://doi.org/10.1016/S0038-0717(01)00158-4
- Krivacsy, Z., Kiss, G., Varga, B., Galambos, I., Sarvari, Z., Gelencser, A., Molnar, A., Fuzzi, S., Facchini, M.C., Zappoli, S., Andracchio, A., Alsberg, T., Hansson, H.C., Persson, L. (2000) Study of humic-like substances in fog and interstitial aerosol by size-exclusion chromatography and capillary electrophoresis. Atmospheric Environment 34, 4273-4281. https://doi.org/10.1016/S1352-2310(00)00211-9
- Krivacsy, Z., Gelencser, A., Kiss, G., Meszaros, E., Molnar, A., Hoffer, A., Meszaros, T., Sarvari, Z., Temesi, D., Varga, B., Baltensperger, U., Nyeki, S., Weingartner, E. (2001) Study on the chemical character of water soluble organic compounds in fine atmospheric aerosol at the Jungfraujoch. Journal of Atmospheric Chemistry 39, 235-259. https://doi.org/10.1023/A:1010637003083
- Lin, P., Huang, X.F., He, L.Y., Yu, J.Z. (2010) Abundance and size distribution of HULIS in ambient aerosols at a rural site in South China. Journal of Aerosol Science 41, 74-87. https://doi.org/10.1016/j.jaerosci.2009.09.001
- Lin, P., Rincon, A.G., Kalberer, M., Yu, J.Z. (2012) Elemental composition of HULIS in the Pearl River delta region, China: results inferred from positive and negative electrospray high resolution mass spectrometric data. Environmental Science & Technology 46, 7454-7462. https://doi.org/10.1021/es300285d
- Malcolm, R.L. (1990) The uniqueness of humic substances in each of soil, stream and marine environments. Analytica Chimica Acta 232, 19-30. https://doi.org/10.1016/S0003-2670(00)81222-2
- Okochi, H., Brimblecombe, P. (2002) Potential trace metalorganic complexation in the atmosphere. The scientific world 2, 767-786. https://doi.org/10.1100/tsw.2002.132
- Okochi, H., Sato, E., Matsubayashi, Y., Igawa, M. (2008) Effect of atmospheric humic-like substances on the enhanced dissolution of volatile organic compounds into dew water. Atmospheric Research 87, 213-223. https://doi.org/10.1016/j.atmosres.2007.11.003
- Paris, R., Desboeufs, K.V. (2013) Effect of atmospheric organic complexation on iron-bearing dust solubility. Atmospheric Chemistry and Physics 13, 4895-4905. https://doi.org/10.5194/acp-13-4895-2013
- Samburova, V., Didenko, T., Kunenkov, E., Emmenegger, C., Zenobi, R., Kalberer, M. (2007) Functional group analysis of high-molecular weight compounds in the water-soluble fraction of organic aerosols. Atmospheric Environment 41, 4703-4710. https://doi.org/10.1016/j.atmosenv.2007.03.033
- Sannigrahi, P., Sullivan, A., Weber, R., Ingall, E. (2006) Characterization of water soluble organic carbon in urban atmospheric aerosols using solid-state C-13 NMR spectroscopy. Environmental Science & Technology 40, 666-672. https://doi.org/10.1021/es051150i
- Scheinhardt, S., Muller, K., Spindler, G., Herrmann, H. (2013) Complexation of trace metals in size-segregated aerosol particles at nine sites in Germany. Atmospheric Environment 74, 102-109. https://doi.org/10.1016/j.atmosenv.2013.03.023
- Song, J., He, L., Peng, P., Zhao, J., Ma, S., Song, J., Ma, S. (2012) Chemical and Isotopic Composition of Humic-Like Substances (HULIS) in Ambient Aerosols in Guangzhou. Aerosol Science and Technology 46, 533-546. https://doi.org/10.1080/02786826.2011.645956
- Stone, E.A., Hedman, C.J., Sheesley, R.J., Shafer, M.M., Schauer, J.J. (2009) Investigating the chemical nature of humic-like substances (HULIS) in North American atmospheric aerosols by liquid chromatography tandem mass spectrometry. Atmospheric Environment 43, 4205-4213. https://doi.org/10.1016/j.atmosenv.2009.05.030
- Sun, J., Ariya, P.A. (2006) Atmospheric organic and bioaerosols as cloud condensation nuclei (CCN): A review. Atmospheric Environment 40, 795-920. https://doi.org/10.1016/j.atmosenv.2005.05.052
- Varga, B., Kiss, G., Ganszky, I., Glencser, A., Krivacsy, Z. (2001) Isolation of water-soluble organic matter from atmospheric aerosol. Talanta 55, 561-572. https://doi.org/10.1016/S0039-9140(01)00446-5
-
Wang, B., Knopf, D.A. (2011) Heterogeneous ice nucleation on particles composed of humic-like substances impacted by
$O_3$ . Journal of Geophysical Research: Atmospheres 116, 1-14. - Willey, J.D., Kieber, R.J., Williams, K.H., Crozier, J.S., Skrabal, S.A., Avery, G.B. (2000) Temporal variability of iron speciation in coastal rainwater. Journal of Atmospheric Chemistry 37, 185-205. https://doi.org/10.1023/A:1006421624865
- Yamanokoshi, E., Okochi, H., Ogata, H., Kobayashi, Y. (2014) Behavior and origin of water-soluble humic-like substances in particulate matter in central Tokyo. Journal of Japan Society for Atmospheric Environment 49, 43-52. (in Japanese with English summary)
- Zheng, G., He, K., Duan, F., Cheng, Y., Ma, Y. (2013) Measurement of humic-like substances in aerosols: A review. Environmental Pollution 181, 301-314. https://doi.org/10.1016/j.envpol.2013.05.055
Cited by
- Humic-like substances global levels and extraction methods in aerosols pp.1610-3661, 2018, https://doi.org/10.1007/s10311-018-00820-6
- Concentrations, optical properties and sources of humic-like substances (HULIS) in fine particulate matter in Xi'an, Northwest China vol.789, pp.None, 2018, https://doi.org/10.1016/j.scitotenv.2021.147902