DOI QR코드

DOI QR Code

Chemical Structural Features of Humic-like Substances (HULIS) in Urban Atmospheric Aerosols Collected from Central Tokyo with Special Reference to Nuclear Magnetic Resonance Spectra

  • Katsumi, Naoya (Department of Environmental Science, Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University) ;
  • Miyake, Shuhei (Department of Resources and Environmental Engineering, School of Creative Science and Engineering, Waseda University) ;
  • Okochi, Hiroshi (Department of Resources and Environmental Engineering, School of Creative Science and Engineering, Waseda University)
  • Received : 2017.10.09
  • Accepted : 2018.03.13
  • Published : 2018.06.30

Abstract

We measured $^1H$ and $^{13}C$ nuclear magnetic resonance (NMR) spectra of Humic-like substances (HULIS) in urban atmospheric aerosols isolated by diethylaminoethyl (DEAE) and hydrophilic-lipophilic balance (HLB) resin to characterize their chemical structure. HULIS isolated by DEAE resin were characterized by relatively high contents of aromatic protons and relatively low contents of aliphatic protons in comparison with HULIS isolated by HLB resin, while the contents of protons bound to oxygenated aliphatic carbon atoms were similar. These results were consistent with the results of the $^{13}C$ NMR analysis and indicate that hydrophobic components were more selectively adsorbed onto HLB, while DEAE resins selectively retained aromatic carboxylic acids. Furthermore, we demonstrated that the chemical structural features of HULIS were significantly different between spring and summer samples and that these disparities were reflective of their different sources. The estimated concentrations of HULIS in spring were found to be regulated by vehicle emissions and pollen dispersion, while the behavior of HULIS in summer was similar to photochemical oxidant and nitrogen dioxide concentrations. The proportion of aliphatic protons for summer samples was higher than that for spring samples, while the proportion of aromatic protons for summer samples was lower than that for spring samples. These seasonal changes of the chemical structure may also involve in their functional expression in the atmosphere.

Keywords

References

  1. Baduel, C., Voison, D., Jaffrezo, J.L. (2009) Comparison of analytical methods for Humic Like Substances (HULIS) measurements in atmospheric particles. Atmospheric Chemistry and Physics 9, 5949-5962. https://doi.org/10.5194/acp-9-5949-2009
  2. Baduel, C., Voison, D., Jaffrezo, J.L. (2010) Seasonal variations of concentrations and optical properties of water soluble HULIS collected in urban environments. Atmospheric Chemistry and Physics 10, 4085-4095. https://doi.org/10.5194/acp-10-4085-2010
  3. Chalbot, M.-C.G., Brown, J., Chitranshi, P., Gamboa da Costa, G., Pollock, E.D., Kavouras, I.G. (2014) Functional characterization of the water-soluble organic carbon of size-fractionated aerosol in the southern Mississippi Valley. Atmospheric Chemistry and Physics 14, 6075-6088. https://doi.org/10.5194/acp-14-6075-2014
  4. Chalbot, M.-C.G., Kavouras, I.G. (2014) Nuclear magnetic resonance spectroscopy for determining the functional content of organic aerosols: A review. Environmental Pollution 191, 232-249. https://doi.org/10.1016/j.envpol.2014.04.034
  5. Chalbot, M.-C.G., Chitranshi, P., Costa, G.G., Pollock, E., Kavouras, I.G. (2015) Characterization of watersoluble organic matter in urban aerosol by $^{1}H$-NMR spectroscopy. Atmospheric Environment 128, 235-245.
  6. Decesari, S., Facchini, M.C., Fuzzi, S., Tagliavini, E. (2000) Characterization of water-soluble organic compounds in atmospheric aerosol: a new approach. Journal of Geophysical Research: Atmospheres 105, 1481-1489. https://doi.org/10.1029/1999JD900950
  7. Decesari, S., Mircea, M., Cavalli, F., Fuzzi, S., Moretti, F., Tagliavini, E., Facchini, M.C. (2007) Source attribution of water-soluble organic aerosol by nuclear magnetic resonance spectroscopy. Environmental Science & Technology 41, 2479-2484. https://doi.org/10.1021/es061711l
  8. Duarte, R.M.B.O., Duarte, A.C. (2005) Application of non-ionic solid sorbents (XAD Resins) for the isolation and fractionation of water-soluble organic compounds from atmospheric aerosols. Journal of Atmospheric Chemistry 51, 79-93. https://doi.org/10.1007/s10874-005-8091-x
  9. Duarte, R.M.B.O., Pio, C.A., Duarte, A.C. (2005) Spectroscopic study of the water-soluble organic matter isolated from atmospheric aerosols collected under different atmospheric conditions. Analytica Chimica Acta 530, 7-14. https://doi.org/10.1016/j.aca.2004.08.049
  10. Duarte, R.M.B.O., Santos, B.H.E., Pio, C.A., Duarte, A.C. (2007) Comparison of structural features of watersoluble organic matter from atmospheric aerosols with those of aquatic humic substances. Atmospheric Environment 41, 8100-8113. https://doi.org/10.1016/j.atmosenv.2007.06.034
  11. Duarte, R.M.B.O., Freire, S.M.S.C., Duarte, A.C. (2015) Investigation the water-soluble organic functionality of urban aerosols using two-dimensional of solid-state $^{13}C$ NMR and FTIR spectral data. Atmospheric Environment 116, 245-252. https://doi.org/10.1016/j.atmosenv.2015.06.043
  12. Environmental Bureau of the Tokyo Metropolitan Government (2011) Release Inventory of $PM_{2.5}$ etc. https://www.kankyo.metro.tokyo.jp/air/attachement/013_inbentori.pdf (in Japanese, 9 February 2017)
  13. Fan, X., Song, J., Peng, P. (2012) Comparison of isolation and quantification methods to measure humic-like substances (HULIS) in atmospheric particles. Atmospheric Environment 60, 366-374. https://doi.org/10.1016/j.atmosenv.2012.06.063
  14. Fan, X., Song, J., Peng, P. (2013) Comparative study for separation of atmospheric humic-like substance (HULIS) by ENVI-18, HLB, XAD-8 and DEAE sorbents: elemental composition, FT-IR, $^1H NMR$ and off-line thermochemolysis with tetramethylammonium hydroxide (TMAH). Chemosphere 93, 1710-1719. https://doi.org/10.1016/j.chemosphere.2013.05.045
  15. Feczko, T., Puxbaum, H., Kasper-Giebl, A., Handler, M., Limbeck, A., Gelencser, A., Pio, C., Preunkert, S., Legrand, M. (2007) Determination of water and alkaline extractable atmospheric humic-like substances with the TU Vienna HULIS analyzer in samples from six background sites in Europe. Journal of Geophysical Research: Atmospheres 112, D23.
  16. Fujitake, N., Kawahigashi, M. (1999) $^{13}C$ NMR spectra and elemental composition of fractions with different particle sizes from an Andosol humic acid. Soil Science and Plant Nutrition 45, 359-366. https://doi.org/10.1080/00380768.1999.10409350
  17. Fujitake, N., Kodama, H., Nagao, S., Tsuda, K., Yonebayashi, K. (2009) Chemical properties of fulvic acids isolated from Lake Biwa, a clear water system in Japan, Humic substances research 5/6, 45-53.
  18. Gelencser, A., Hoffer, A., Krivacsy, Z., Kiss, G., Molnar, A., Meszaros, E. (2002) On the possible origin of humic matter in fine continental aerosol. Journal of Geophysical Research: Atmospheres 107, D12.
  19. Graber, E.R., Rudich, Y. (2006) Atmospheric HULIS: How humic-like are they? A comprehensive and critical review. Atmospheric Chemistry and Physics 6, 729-753. https://doi.org/10.5194/acp-6-729-2006
  20. Havers, N., Burba, P., Lambert, J., Klockow, D. (1998) Spectroscopic characterization of humic-like substances in airborne particulate matter. Journal of Atmospheric Chemistry 29, 45-54. https://doi.org/10.1023/A:1005875225800
  21. Hedges, J.I., Eglinton, G., Hatcher, P.G., Kirchman, D.L., Arnosti, C., Derenne, S., Evershed, R.P., Kogel-Knabner, I., de Leeuw, J.W., Littke, R., Michaelis, W., Rullkotter, J. (2000) The molecularly-uncharacterized component of nonliving organic matter in natural environments. Organic Geochemistry 31, 945-958. https://doi.org/10.1016/S0146-6380(00)00096-6
  22. Hiraide, M., Shima, T., Kawaguchi, H. (1994) Separation and determination of dissolved and particulate humic substances in river water. Microchimica Acta 113, 269-276. https://doi.org/10.1007/BF01243617
  23. Hoffer, A., Gelencer, A., Guyon, P., Schmid, O., Frank, G.P., Artaxo, P., Andreae, M.O. (2006) Optical properties of humic-like substances (HULIS) in biomassburning aerosols. Atmospheric Chemistry and Physics 6, 3563-3570. https://doi.org/10.5194/acp-6-3563-2006
  24. Katsumi, N., Yonebayashi, K., Okazaki, M., Nishiyama, S., Nishi, T., Hosaka, A., Watanabe, C. (2016) Characterization of soil organic matter with different degree of humification using evolved gas analysis-mass spectrometry. Talanta 155, 28-37. https://doi.org/10.1016/j.talanta.2016.04.007
  25. Kawahigashi, M., Fujitake, N., Takahashi, T. (1996) Structural information obtained from spectral analysis (UVVIS, IR, $^1H$ NMR) of particle size fractions in two humic acids. Soil Science and Plant Nutrition 42, 355-360.
  26. Kiss, G., Varga, B., Galambos, I., Ganszky, I. (2002) Characterization of Water-Soluble Organic Matter Isolated from Atmospheric Fine Aerosol. Journal of Geophysical Research 107, 8339.
  27. Kiss, G., Tombacz, E., Varga, B., Alsberg, T., Persson, L. (2003) Estimation of the average molecular weight of humic-like substances isolated from fine atmospheric aerosol. Atmospheric Environment 37, 3783-3794. https://doi.org/10.1016/S1352-2310(03)00468-0
  28. Kogel-Knabner, I. (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biology & Biochemistry 34, 139-162. https://doi.org/10.1016/S0038-0717(01)00158-4
  29. Krivacsy, Z., Kiss, G., Varga, B., Galambos, I., Sarvari, Z., Gelencser, A., Molnar, A., Fuzzi, S., Facchini, M.C., Zappoli, S., Andracchio, A., Alsberg, T., Hansson, H.C., Persson, L. (2000) Study of humic-like substances in fog and interstitial aerosol by size-exclusion chromatography and capillary electrophoresis. Atmospheric Environment 34, 4273-4281. https://doi.org/10.1016/S1352-2310(00)00211-9
  30. Krivacsy, Z., Gelencser, A., Kiss, G., Meszaros, E., Molnar, A., Hoffer, A., Meszaros, T., Sarvari, Z., Temesi, D., Varga, B., Baltensperger, U., Nyeki, S., Weingartner, E. (2001) Study on the chemical character of water soluble organic compounds in fine atmospheric aerosol at the Jungfraujoch. Journal of Atmospheric Chemistry 39, 235-259. https://doi.org/10.1023/A:1010637003083
  31. Lin, P., Huang, X.F., He, L.Y., Yu, J.Z. (2010) Abundance and size distribution of HULIS in ambient aerosols at a rural site in South China. Journal of Aerosol Science 41, 74-87. https://doi.org/10.1016/j.jaerosci.2009.09.001
  32. Lin, P., Rincon, A.G., Kalberer, M., Yu, J.Z. (2012) Elemental composition of HULIS in the Pearl River delta region, China: results inferred from positive and negative electrospray high resolution mass spectrometric data. Environmental Science & Technology 46, 7454-7462. https://doi.org/10.1021/es300285d
  33. Malcolm, R.L. (1990) The uniqueness of humic substances in each of soil, stream and marine environments. Analytica Chimica Acta 232, 19-30. https://doi.org/10.1016/S0003-2670(00)81222-2
  34. Okochi, H., Brimblecombe, P. (2002) Potential trace metalorganic complexation in the atmosphere. The scientific world 2, 767-786. https://doi.org/10.1100/tsw.2002.132
  35. Okochi, H., Sato, E., Matsubayashi, Y., Igawa, M. (2008) Effect of atmospheric humic-like substances on the enhanced dissolution of volatile organic compounds into dew water. Atmospheric Research 87, 213-223. https://doi.org/10.1016/j.atmosres.2007.11.003
  36. Paris, R., Desboeufs, K.V. (2013) Effect of atmospheric organic complexation on iron-bearing dust solubility. Atmospheric Chemistry and Physics 13, 4895-4905. https://doi.org/10.5194/acp-13-4895-2013
  37. Samburova, V., Didenko, T., Kunenkov, E., Emmenegger, C., Zenobi, R., Kalberer, M. (2007) Functional group analysis of high-molecular weight compounds in the water-soluble fraction of organic aerosols. Atmospheric Environment 41, 4703-4710. https://doi.org/10.1016/j.atmosenv.2007.03.033
  38. Sannigrahi, P., Sullivan, A., Weber, R., Ingall, E. (2006) Characterization of water soluble organic carbon in urban atmospheric aerosols using solid-state C-13 NMR spectroscopy. Environmental Science & Technology 40, 666-672. https://doi.org/10.1021/es051150i
  39. Scheinhardt, S., Muller, K., Spindler, G., Herrmann, H. (2013) Complexation of trace metals in size-segregated aerosol particles at nine sites in Germany. Atmospheric Environment 74, 102-109. https://doi.org/10.1016/j.atmosenv.2013.03.023
  40. Song, J., He, L., Peng, P., Zhao, J., Ma, S., Song, J., Ma, S. (2012) Chemical and Isotopic Composition of Humic-Like Substances (HULIS) in Ambient Aerosols in Guangzhou. Aerosol Science and Technology 46, 533-546. https://doi.org/10.1080/02786826.2011.645956
  41. Stone, E.A., Hedman, C.J., Sheesley, R.J., Shafer, M.M., Schauer, J.J. (2009) Investigating the chemical nature of humic-like substances (HULIS) in North American atmospheric aerosols by liquid chromatography tandem mass spectrometry. Atmospheric Environment 43, 4205-4213. https://doi.org/10.1016/j.atmosenv.2009.05.030
  42. Sun, J., Ariya, P.A. (2006) Atmospheric organic and bioaerosols as cloud condensation nuclei (CCN): A review. Atmospheric Environment 40, 795-920. https://doi.org/10.1016/j.atmosenv.2005.05.052
  43. Varga, B., Kiss, G., Ganszky, I., Glencser, A., Krivacsy, Z. (2001) Isolation of water-soluble organic matter from atmospheric aerosol. Talanta 55, 561-572. https://doi.org/10.1016/S0039-9140(01)00446-5
  44. Wang, B., Knopf, D.A. (2011) Heterogeneous ice nucleation on particles composed of humic-like substances impacted by $O_3$. Journal of Geophysical Research: Atmospheres 116, 1-14.
  45. Willey, J.D., Kieber, R.J., Williams, K.H., Crozier, J.S., Skrabal, S.A., Avery, G.B. (2000) Temporal variability of iron speciation in coastal rainwater. Journal of Atmospheric Chemistry 37, 185-205. https://doi.org/10.1023/A:1006421624865
  46. Yamanokoshi, E., Okochi, H., Ogata, H., Kobayashi, Y. (2014) Behavior and origin of water-soluble humic-like substances in particulate matter in central Tokyo. Journal of Japan Society for Atmospheric Environment 49, 43-52. (in Japanese with English summary)
  47. Zheng, G., He, K., Duan, F., Cheng, Y., Ma, Y. (2013) Measurement of humic-like substances in aerosols: A review. Environmental Pollution 181, 301-314. https://doi.org/10.1016/j.envpol.2013.05.055

Cited by

  1. Humic-like substances global levels and extraction methods in aerosols pp.1610-3661, 2018, https://doi.org/10.1007/s10311-018-00820-6
  2. Concentrations, optical properties and sources of humic-like substances (HULIS) in fine particulate matter in Xi'an, Northwest China vol.789, pp.None, 2018, https://doi.org/10.1016/j.scitotenv.2021.147902