• 제목/요약/키워드: Nuclear magnetic resonance (Nmr)

검색결과 543건 처리시간 0.026초

Polymorphic Characterization of Pharmaceutical Solids, Donepezil Hydrochloride, by 13C CP/MAS Solid-State Nuclear Magnetic Resonance Spectroscopy

  • Park, Tae-Joon;Ko, Dong-Hyun;Kim, Young-Ju;Kim, Yon-Gae
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권9호
    • /
    • pp.2007-2010
    • /
    • 2009
  • Donepezil hydrochloride is a reversible acetylcholinesterase inhibitor that is used in the treatment of Alzheimer’s disease to improve the cognitive performance. It shows different crystalline forms including hydrates. Therefore, it is very important to confirm the polymorphic forms in the formulations of pharmaceutical materials because polymorphs of the same drug often exhibit significant differences in solubility, bioavailability, processability and physical/chemical stability. In this paper, four different forms of donepezil hydrochloride were prepared and characterized using X-ray powder diffraction, Fourier transform infrared, and solid-state nuclear magnetic resonance (NMR) spectroscopy. This study showed that solid-state NMR spectroscopy is a powerful technique for obtaining structural information and the polymorphology of pharmaceutical solids.

1H-NMR Analysis of Metabolic Changes Induced by Snf1/AMP-Activated Protein Kinase During Environmental Stress Responses

  • Kim, Jiyoung;Oh, Junsang;Yoon, Deok-Hyo;Sung, Gi-Ho
    • Mycobiology
    • /
    • 제47권3호
    • /
    • pp.346-349
    • /
    • 2019
  • AMP-activated protein kinase sucrose non-fermenting 1 (Snf1) is a representative regulator of energy status that maintains cellular energy homeostasis. In addition, Snf1 is involved in the mediation of environmental stress such as salt stress. Snf1 regulates metabolic enzymes such as acetyl-CoA carboxylase, indicating a possible role for Snf1 in metabolic regulation. In this article, we performed nuclear magnetic resonance (NMR) spectroscopy to profile the metabolic changes induced by Snf1 under environmental stress. According to our NMR data, we suggest that Snf1 plays a role in regulating cellular concentrations of a variety of metabolites during environmental stress responses.

Structural Characteristics of 3- and 4-Coordinate Borons from 11B MAS NMR and Single-Crystal NMR in the Nonlinear Optical Material BiB3O6

  • Kim, Woo Young;Lim, Ae Ran
    • 한국자기공명학회논문지
    • /
    • 제17권1호
    • /
    • pp.24-29
    • /
    • 2013
  • The structural characteristics of 4-coordinate $BO_4$ [B(1)] and 3-coordinate $BO_3$ [B(2)] groups in $BiB_3O_6$ were studied by $^{11}B$ magic angle spinning (MAS) and single-crystal nuclear magnetic resonance (NMR) spectroscopy. The spin-lattice relaxation time in the laboratory frame, $T_1$, for $^{11}B$ decreased slowly with increasing temperature, whereas the spin-lattice relaxation times in the rotating frame, $T_{1{\rho}}$, for B(1) and B(2), which differed from $T_1$, were nearly constant. Further, $T_{1{\rho}}$ for B(1) and B(2) showed very similar trends, although the $T_{1{\rho}}$ value of B(2) was shorter than that of B(1). The 3-coordinate $BO_3$ and 4-coordinate $BO_4$ were distinguished by $^{11}B$ MAS NMR spectrum and $T_{1{\rho}}$.

초전도 한류기의 이해

  • 심정욱
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 2009년도 Korea Superconductivity Society Meeting 2009
    • /
    • pp.23-23
    • /
    • 2009
  • PDF

[ $^1H$ ] Nuclear Magnetic Resonance Study of Ferroelectric $(NH_4)_3H(SO_4)_2$

  • Choi, S.H.;Han, K.S.;Kwon, S.K.;Nam, S.K.;Choi, H.H.;Lee, Moo-Hee;Lim, Ae-Ran
    • 한국자기공명학회논문지
    • /
    • 제11권2호
    • /
    • pp.64-72
    • /
    • 2007
  • [ $^1H$ ] nuclear magnetic resonance (NMR) experiments have been performed at 30 - 300 K and 7 T to investigate dynamics of hydrogen bond network in the single crystal $(NH_4)_3H(SO_4)_2$. The two proton sites, ammonium proton and hydrogen-bond proton, are identified from the $^1H$ NMR MAS spectrum at 340 K. As temperature decreases, the $^1H$ NMR spectrum shifts to the higher frequency side with a larger linewidth. The spectrum at 65 K shows a distinctive change in line shape toward the ferroelectric transition at 63 K. The measured values of $T_1$ for ammonium and hydrogen-bond protons are similar in the whole range of temperature. $T_1$ of $^1H$ NMR shows a gradual decrease down to 120 K and starts to steeply increase below 100 K. Then $T_1$ shows abrupt decrease below 70 K with a sharp minimum at 63 K, where the ferroelectric transition occurs. This temperature dependence of spectrum and $T_1$ clearly prove that the large change in the dynamics of hydrogen bond network is associated with the ferroelectric phase transition at 63 K.

  • PDF

NMR 자석용 고온 초전도 내부 코일을 위한 플럭스 폄프에 대한 실험 (Experiment of Flux pump for High Temperature Superconductor Insert coils of NMR magnets)

  • 정상권
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제3권2호
    • /
    • pp.15-20
    • /
    • 2001
  • This paper describes a model flux pump experiment recently performed at the MIT Francis Bitter Magnet Laboratory. The results of the model flux pump will be used in the development of a prototype flux pump that will be couple to a high-temperature superconductor (HTS) insert coil of a high-field NMR (Nuclear Magnetic Resonance) magnet, Such an HTS insert is unlikely to operate in persistent model because of the conductors low index(n) The flux pump can compensate fro field decay in the HTS insert coil and make the insert operate effectively in persistent mode . The flux pump, comprised essentially of a transformer an two switches. all made of superconductor, transfers into the insert coil a fraction of a magnetic energy that is first introduced in the secondary circuit of the transformer by a current supplied to the primary circuit. A model flux pump has been designed. fabricated, and operated to demonstrate that a flux pump can indeed supply a small metered current into a load superconducting magnet. A current increment in the range of microamperes has been measured in the magnet after each pumping action. The superconducting model flux pump is made of Nb$_3$ Sn tape, The pump is placed in a gaseous environment above the liquid helium level to keep its heat dissipation from directly discharged in the liquid: the effluent helium vapor maintains the thermal stability of the flux pump.

  • PDF

Freezing Behaviors of Frozen Foods Determined by $^1H$ NMR and DSC

  • Lee, Su-Yong;Moon, Se-Hun;Shim, Jae-Yong;Kim, Yong-Ro
    • Food Science and Biotechnology
    • /
    • 제17권1호
    • /
    • pp.102-105
    • /
    • 2008
  • The freezing patterns of commercial frozen foods were characterized by using proton nuclear magnetic resonance ($^1H$ NMR) relaxometry and differential scanning calorimetry (DSC). The liquid-like components like unfrozen water were investigated as a function of temperature (10 to $-40^{\circ}C$) and then compared with the unfrozen water content measured by DSC. The formation of ice crystals and the reduction of water in the foods during freezing were readily observed as a loss of the NMR signal intensity. The proton NMR relaxation measurement showed that the decreasing pattern of the liquid-like components varied depending on the samples even though they exhibited the same onset temperature of ice formation at around $0^{\circ}C$. When compared with the unfrozen water content obtained by the DSC, the NMR and DSC results could be closely correlated at the temperature above $-20^{\circ}C$. However, the distinct divergence in the values between 2 methods was observed with further decreasing temperatures probably due to the solid glass formation which was not detected by DSC.

1H Nuclear Magnetic Resonance of a Ferroelectric Liquid Crystalline System

  • Cha, J.K.;Lee, K.W.;Oh, I.H.;Han, J.H.;Lee, Cheol-Eui;Jin, J.I.;Choi, J.Y.
    • Journal of Magnetics
    • /
    • 제15권2호
    • /
    • pp.61-63
    • /
    • 2010
  • We used $^1H$ nuclear magnetic resonance (NMR) to study the phase transitions and molecular dynamics in a characteristic ferroelectric liquid crystal with a carbon number n = 7, S-2-methylbutyl 4-n-heptyloxybiphenyl-4'-carboxylate (C7). The results were compared with those of our recent work on S-2-methylbutyl 4-n-octanoyloxybiphenyl-4'-carboxylate (C8), with a carbon number n = 8. While the recrystallization and isotropic phase transitions exhibited a first-order nature in the $^1H$ NMR spin-lattice and spin-spin relaxation measurements, a second-order nature was shown at the Sm-A - Sm-$C^*$ liquid crystalline phase transition. A soft-mode anomaly arising from the tilt angle amplitude fluctuation of the director, of which only a hint had been noticed in the C8 system, was manifested in the C7 system at this transition.

Study on nuclear magnetic resonance of superionic conductor NH4HSeO4 in rotating frame

  • Choi, Jae Hun;Lim, Ae Ran
    • 한국자기공명학회논문지
    • /
    • 제18권1호
    • /
    • pp.41-46
    • /
    • 2014
  • In order to obtain information on the structural geometry of $NH_4HSeO_4$ near the phase transition temperature, the spectrum and spin-lattice relaxation time in the rotating frame $T_{1{\rho}}$ for the ammonium and hydrogen-bond protons were investigated through $^1H$ MAS NMR. $T_{1{\rho}}$ for the hydrogen-bond protons abruptly decreased at high temperature and it is associated with the change in the structural geometry in $O-H{\cdots}O$ bonds. This mobility of the hydrogen-bond protons may be the main reason for the high conductivity.

Assessment of the Purity of Emodin by Quantitative Nuclear Magnetic Resonance Spectroscopy and Mass Balance

  • Park, Sojung;Choi, Yu-Jin;Do, Giang Hoang;Seo, Eun Kyoung;Hyun, Seunghun;Lee, Dongho
    • Natural Product Sciences
    • /
    • 제25권3호
    • /
    • pp.222-227
    • /
    • 2019
  • Quantitative nuclear magnetic resonance (qNMR) is a well-established method adopted by international pharmacopoeia for quantitative and purity analyses. Emodin is a type of anthraquinone, well known as the main active component of Fabaceae, Polygonaceae and Rhamnaceae. Purity analysis of emodin is usually performed by using the high-performance liquid chromatography (HPLC)-UV method. However, it cannot detect impurities such as salts, volatile matter, and trace elements. Using the qNMR method, it is possible to determine the compound content as well as the nature of the impurities. Several experimental parameters were optimized for the quantification, such as relaxation delay, spectral width, number of scans, temperature, pulse width, and acquisition time. The method was validated, and the results of the qNMR method were compared with those obtained by the HPLC and mass balance analysis methods. The qNMR method is specific, rapid, simple, and therefore, a valuable and reliable method for the purity analysis of emodin.