Journal of the Korean Magnetic Resonance Society **2013**, *17*, 24-29 DOI 10.6564/JKMRS.2013.17.1.024

Structural Characteristics of 3- and 4-Coordinate Borons from ¹¹B MAS NMR and Single-Crystal NMR in the Nonlinear Optical Material BiB₃O₆

Woo Young Kim¹ and Ae Ran Lim^{1,2,*}

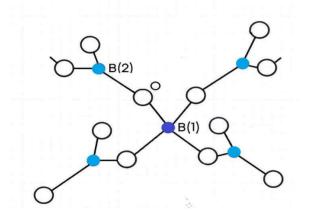
¹Department of Carbon Fusion Engineering, Jeonju University, Jeonju 560-759, Korea ²Department of Science Education, Jeonju University, Jeonju 560-759, Korea

Received April 5, 2013; Revised June 04, 2013; Accepted June 10, 2013

Abstract The structural characteristics of 4-coordinate BO_4 [B(1)] and 3-coordinate BO_3 [B(2)] groups in BiB₃O₆ were studied by ¹¹B magic angle spinning (MAS) and single-crystal nuclear magnetic resonance (NMR) spectroscopy. The spin–lattice relaxation time in the laboratory frame, T₁, for ¹¹B decreased slowly with increasing temperature, whereas the spin–lattice relaxation times in the rotating frame, T₁, for B(1) and B(2), which differed from T₁, were nearly constant. Further, T₁, for B(1) and B(2) showed very similar trends, although the T₁, value of B(2) was shorter than that of B(1). The 3-coordinate BO₃ and 4-coordinate BO₄ were distinguished by ¹¹B MAS NMR spectrum and T₁.

Keywords BiB₃O₆, Boron, Nonlinear optical material, MAS NMR, Spin–lattice relaxation time

Introduction


 BiB_3O_6 was first described in early 1962 by investigation of the binary phase diagram for $Bi_2O_3-B_2O_3^{-1}$. Later, in 1982, the first single crystals of BiB_3O_6 were grown²⁻⁴. BiB_3O_6 single crystals have been of considerable interest during the last decade owing to their highly efficient nonlinear optical (NLO) properties in second-harmonic generation⁵ as well as third-harmonic generation applications⁶. The complex structural characteristics of borate compounds lead to a great variety in the selection of structural types favorable for NLO effects, and the anionic group theory can be used to systematically elucidate which structural unit is most likely to exhibit large nonlinearities. In particular, many studies discussed the bond parameter methods, anharmonic oscillator models, and bond charge model^{7, 8}. Chen's group⁹ has turned its attention to borates. They recognized that borate compounds have numerous structural types because borate atoms may have either 3- or 4-fold coordination. In addition, they¹⁰⁻¹² suggested that the π -conjugated orbital system of an acentric planar organic molecule with charge transfer between donor and acceptor substituent groups was mainly responsible for the presence of a large second-order susceptibility in such molecules. Previous investigations have established that bismuth triborate, BiB₃O₆, has superior NLO properties as compared to other borate crystals1¹³⁻¹⁷; for example, its effective nonlinear coefficient is 4 times that of LiB₃O₅ and 1.5 times that of $BaB_2O_4^{18}$. BiB_3O_6 is a non-ferroelectric, polar crystal with outstanding physical properties, and it has quickly come to be recognized as an excellent NLO material 19-24.

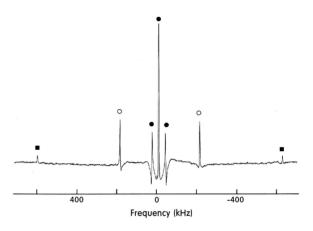
The relaxation mechanisms of BiB_3O_6 have been studied by examining the ¹¹B spin–lattice relaxation time, T₁, in the laboratory frame²⁵. However, the relaxation times of the 4-coordinate B(1) atoms and

* Address correspondence to: **Ae Ran Lim**, Department of Science Education, Jeonju University, Jeonju 560-759, Korea, Tel: +82-(0)63-220-2514; Fax: +82-(0)63-220-2053; E-mail: aeranlim@hanmail.net

3-coordinate B(2) atoms cannot be distinguished because the central resonance lines of B(1) and B(2) overlap. To obtain detailed information about the environments of the two types of borons, it is necessary to measure the spin–lattice relaxation times in the rotating frame T_{10} of ¹¹B nuclei.

In this paper, the structural characteristics of 3-coordinate BO_3 and 4-coordinate BO_4 groups in BiB_3O_6 were studied using ¹¹B magic angle spinning (MAS) nuclear magnetic resonance (NMR) and single-crystal NMR spectroscopy. These results can be used to develop guidelines for identifying and developing NLO materials.

Figure 1. View of BO_4 tetrahedra, B(1), and BO_3 triangles, B(2), in BiB_3O_6 .


Crystal structure

BiB₃O₆ crystals have a monoclinic structure with space group C2 (C_2^3) and cell parameters a=7.116 Å, b=4.993 Å, c=6.508 Å, and β =105.62° ²⁶. These crystals consist of (B₃O₆)³⁻ rings forming sheets of corner-sharing BO₃ triangles and BO₄ tetrahedra, linked by 6-coordinate bismuth cations²⁷, as shown in Fig. 1. A lone-pair electron is located on the bismuth cation. The structure contains sheets formed by BO₃ triangles and BO₄ tetrahedra in a 2:1 ratio. Here, each BO₄ tetrahedron is connected to four BO₃ triangles, each of which serves as a link to a further BO₄ tetrahedron. The bond lengths of the B(2)–O triangle (1.373 Å) are much shorter than those of the B(1)–O tetrahedron (1.465 Å) (4).

Experimental methods

Single crystals of BiB_3O_6 were grown by the top-seeded method. The as-grown BiB_3O_6 crystals were transparent and colorless, and 3 mm \times 3 mm \times 2 mm in size.

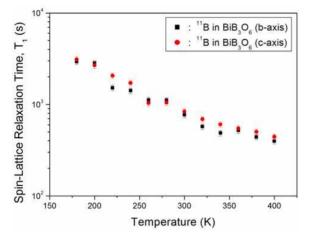
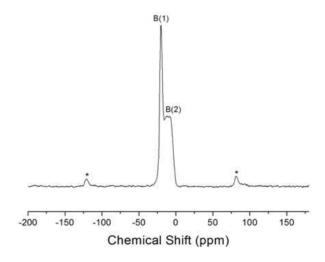

The NMR signals of the ¹¹B nuclei in the BiB₃O₆ single crystals were measured using a Bruker DSX 400 FT NMR spectrometer at the Korea Basic Science Institute. The static magnetic field was 9.4 T, and the central radio frequency was set at $\omega_0/2\pi =$

Figure 2. ¹¹B NMR spectrum of BiB₃O₆ single crystal at room temperature [\blacksquare : B(1), \circ and \bullet : B(2)].

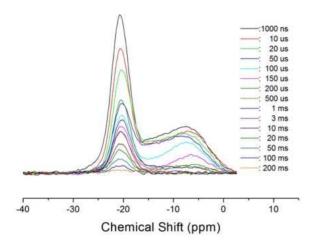
128.34 MHz for the ¹¹B nucleus. The spin–lattice relaxation times in the laboratory frame, T₁, were measured by applying a pulse sequence of $\pi/2-t-\pi/2$. The width of the $\pi/2$ pulse was 0.25 µs for ¹¹B. The nuclear magnetizations S(*t*) of the ¹¹B nuclei at time *t* after the $\pi/2$ pulse were determined from each saturation recovery sequence following the pulse.

In addition, to obtain the spin–lattice relaxation time in the rotating frame, $T_{1\rho}$, solid-state NMR experiments were performed using a Bruker 400 MHz NMR spectrometer. An MAS ¹¹B NMR experiment was performed at a Larmor frequency of 128.34 MHz. The samples were placed in the 4 mm cross-polarization/MAS probe as powders. The MAS rate was set to 13 kHz for ¹¹B MAS to minimize the spinning sideband overlap. The width of the $\pi/2$ pulse for ¹¹B was 2.5 µs, which corresponds to a spin-locking field strength of 100 kHz.


Figure 3. Temperature dependences of the spin–lattice relaxation time in the laboratory frame T_1 for ¹¹B nucleus in BiB₃O₆ single crystal.

Experimental results and discussion

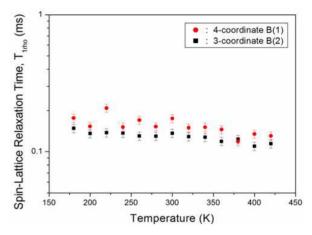
The ¹¹B (I = 3/2) NMR spectrum of BiB₃O₆ crystals usually consists of a central line and two satellite lines. Here, when the magnetic field was applied along the b- axes of the crystal, three groups of resonance lines were observed. The ¹¹B spectrum obtained at room temperature indicates the presence of two types of chemically inequivalent ¹¹B nuclei, denoted B(1) and B(2), as shown in Fig. 2. The difference in intensity ratios in the spectrum is associated with chemically inequivalent positions of ¹¹B atoms in the unit cell¹⁹. The weaker and stronger signals represent the ¹¹B NMR lines for B(1) and B(2), respectively. Further, the two signals for the B(2) nucleus represent magnetically inequivalent but chemically equivalent positions²⁵. In the BiB_3O_6 spectra, the zero point of the horizontal axis corresponds to the resonance frequency of the ¹¹B nucleus (i.e., 128.34 MHz). The central transition is virtually unshifted by the quadrupole interaction, and the separations between the lines for both B(1) and


B(2) do not vary with temperature. Thus, we can conclude that the quadrupole parameters of B(1) and B(2) differ and are independent of temperature. The no variation in the splitting of the ¹¹B resonance lines with temperature indicates that the electric field gradient tensor (EFG) at the B sites remains unchanged, which in turn means that the atoms neighboring the ¹¹B nuclei are not displaced when the temperature is varied.

The ¹¹B spin–lattice relaxation times in the laboratory frame, T_1 , for B(1) and B(2) cannot be distinguished because the central lines of B(1) and B(2) overlap. Thus, the relaxation times of the 4-coordinate B(1)and 3-coordinate B(2) cannot be distinguished. Therefore, T_1 was measured by applying the saturation recovery method to the central resonance line. The magnetizations of the ¹¹B nuclei were measured at several temperatures. The recovery traces for the central resonance line of ¹¹B with dominant quadrupole relaxation can be expressed as combinations of two exponential functions. T₁ was determined directly from the slope of a plot of log $[S(\infty) - S(t)]/S(\infty)$ versus time t. The recovery traces at each temperature are different, and the slopes of the traces decrease with increasing temperature. The temperature dependences of T₁ for ¹¹B NMR determined with the magnetic field along the b- and

Figure 4. ¹¹B MAS NMR spectrum of BiB_3O_6 at room temperature [B(1): 4-coordinate BO_4 , B(2): 3-coordinate BO_3].

c-axes are shown in Fig. 3. The T_1 values for both


Figure 5. Saturation recovery of B(1) and B(2) in BiB_3O_6 as a function of delay time *t* at room temperature.

crystal directions are the same within the experimental error range. The relaxation time decreased with increasing temperature, and the T_1 values for ¹¹B were very long (400–3000 *s*).

The structure of the boron in BiB₃O₆ was analyzed by a solid-state NMR method. The ¹¹B MAS NMR spectrum of BiB₃O₆ at room temperature is shown in Fig. 4. It consists of two peaks at chemical shifts of δ = -20.13 and -10.24 ppm, which indicate the two types of boron. The spinning sidebands are marked with asterisks. The signals at chemical shifts of -20.13 ppm and -10.24 ppm are assigned to the tetrahedral BO₄ [B(1)] and trigonal BO₃ [B(2)] groups, respectively. The former signal is strong, whereas the latter is weak and broad. The 4-coordinate B(1) and 3-coordinate B(2) is consistent with a ratio of 1:2 in a unit cell.

Further, the ¹¹B spin-lattice relaxation times in the rotating frame, $T_{1\rho}$, were taken at several temperatures in BiB₃O₆. The nuclear magnetization recovery traces obtained for B(1) and B(2) were described by a single exponential function, $S(t) = S(\infty)\exp(-t/T_{1\rho})^{-28}$: the recovery traces showed a single exponential decay at all temperatures. The recovery traces of the ¹¹B MAS NMR spectrum are shown in Fig. 5 as a function of delay time from 1000

ns to 200 *ms*. The slopes of the recovery traces are nearly the same at each temperature. The temperature dependences of the ¹¹B spin–lattice relaxation time in the rotating frame, $T_{1\rho}$, for B(1) and B(2) are shown in Fig. 6. $T_{1\rho}$ is nearly temperature independent, and the values for 4-coordinate B(1) and 3-coordinate B(2) show similar trends, with that of B(1) being slightly longer than that of B(2). The relaxation time for ¹¹B is very short (0.2–0.1 *ms*).

Figure 6. Temperature dependences of the spin-lattice relaxation time in the rotating frame $T_{1\rho}$ for B(1) and B(2) in BiB₃O₆.

Conclusion

The spin–lattice relaxation time in the rotating frame $T_{1\rho}$ is generally similar to the spin–lattice relaxation time in the laboratory frame T_1 . Measurements of $T_{1\rho}$ have the advantage of probing molecular motion in the kilohertz range, whereas T_1 reflects motion in the megahertz range. ¹¹B MAS and ¹¹B single-crystal NMR spectroscopy are well-established analytical tools used in several areas to examine the diverse structural chemistry of boron. Here we used them to examine the structural characteristics of 4-coordinate BO₄ [B(1)] and 3-coordinate BO₃ [B(2)] groups in BiB₃O₆. The T₁ values for ¹¹B decreased slowly with increasing temperature, whereas $T_{1\rho}$ was nearly constant. T₁ differed greatly from $T_{1\rho}$; T₁ ~ 800 *s* and $T_{1\rho} \sim 0.15$ *ms* at room temperature. Further, T₁₀ for

28 Structural Characteristics of 3- and 4-Coordinate Borons

4-coordinate B(1) and 3-coordinate B(2) showed very similar trends. The results made it possible to distinguish 3-coordinate BO₃ and 4-coordinate BO₄ boron using ¹¹B MAS NMR spectrum and $T_{1\rho}$. This research can be used to explain the structure–property relationships in most known NLO

crystals of various structural types and to establish guidelines for identifying and developing new NLO materials.

Acknowledgement

This research was supported by the Basic Science Research program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (2012001763).

References

- 1. E. M. Levin, C. L. McDaniel, J. Am. Ceram. Soc. 45, 355 (1962).
- 2. J. Liebertz, Z. Kristallogr. 158, 319 (1982).
- 3. J. Liebertz, Progr. Crystal Growth Charact. 6, 361 (1983).
- 4. R. Frohlich, L. Bohaty, J. Liebertz, Acta Crystallogr. C 40, 343 (1984).
- 5. H. Lingxiong, L. Xiang, Z. Ge, H. Chenghui, W. Yong, J. Phys. D: Appl. Phys. 42, 225109 (2009).
- 6. A. Majchrowski, J. Ebothe, K. Ozga, I.V. Kityk, A.H. Reshak, T. Lukasiewicz, M.G. Brik, J. Phys. D: Appl. Phys. 43, 15103 (2010).
- 7. M. Ghotibi, M. Ebrahim-Zadeh, A. Majchrowski, E. Michalski, I.V. Kityk, Opt. Lett. 29, 2530 (2004).
- 8. M. Ghotbi, Z. Sun, A. Majchrowski, E. Michalski, I.V. Kityk, Appl. Phys. Lett. 89, 173124 (2006).
- 9. C. T. Chen, *Development of New Nonlinear Optical Crystals in the Borate Series*, Harwood Academic Publishers, Switzerland, 1993.
- 10. C. T. Chen, B. C. Wu, A. Jiang, G. M. You, Sci. Sinica B 18, 235 (1985).
- 11. Y. C. Wu, C. T. Chen, Acta Phys. Sinica 35, 1 (1986).
- 12. C. T. Chen, Y. C. Wu, A. Jiang, B. C. Wu, G. M. You, R. K. Li, S. J. Lin, J. Opt. Soc. Am. B 6, 616 (1989).
- 13. D. Xue, K. Betzler, D. Hesse, D. Lammers, Phys. Stat. Solidi A 176, R1 (1999).
- 14. Z. Lin, Z. Wang, C. T. Chen, M. H. Lee, J. Appl. Phys. 90, 5585 (2001).
- 15. B. Teng, J. Wang, Z. Wang, H. Jiang, X. Hu, R. Song, H. Liu, Y. Liu, J. Wei, Z. Shao, *J. Cryst. Growth* **224**, 280 (2001).
- Z. Wang, B. Teng, K. Fu, X. Xu, R. Song, C. Du, H. Jiang, J. Wang, Y. Liu, Z. Shao, *Opt. Commun.* 202, 217 (2002).
- 17. C. Czeranowsky, E. Heumann, G. Huber, Opt. Lett. 28, 432 (2003).
- 18. Ya. V. Burak, I. V. Kityk, T. Berko, Ya. O. Dovgii, Ukr. Phys. Journal V. 32, 312 (1992).
- 19. H. Hellwig, J. Liebertz, L. Bohaty, Solid State Commun. 109, 249 (1999).
- 20. H. Hellwig, J. Liebertz, L. Bohaty, J. Appl. Phys. 88, 240 (2000).
- 21. C. Du, Z. Wang, J. Liu, X. Xu, B. Teng, K. Fu, J. Wang, Y. Liu, Z. Shao, Appl. Phys. B 73, 215 (2001).
- 22. I. V. Kityk, A. Majchrowski, Opt. Mater. 25, 33 (2004).
- A. A. Kaminskii, P. Becker, L. Bohaty, K. Ueda, K. Takaichi, J. Hanuza, M. Maczka, H. J. Eichler, G. M. A. Gad, *Opt. Commun.* 206, 179 (2002).
- 24. J.H. Jang, I.H. Yoon, C.S. Yoon, Opt. Mater. 31, 781 (2009).

Woo Young Kim et al / J. Kor. Magn. Reson., Vol. 17, No. 1, 2013 29

- 25. A. R. Lim, J.H. Jang, I. H. Yoon, C.S. Yoon, Phys. Stat. Solidi B 247, 2290 (2010).
- 26. P. Becker, J. Liebertz, L. Bohaty, J. Cryst. Growth. 203, 149 (1999).
- 27. R. Frohlich, L. Bohaty, J. Liebertz, Acta. Crystallogr. C: Cryst. Struct. Commun. 40, 343 (1984).
- 28. J. L. Koenig, Spectroscopy of Polymer, Elsevier, New York, (1999).