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ABSTRACT
AMP-activated protein kinase sucrose non-fermenting 1 (Snf1) is a representative regulator
of energy status that maintains cellular energy homeostasis. In addition, Snf1 is involved in
the mediation of environmental stress such as salt stress. Snf1 regulates metabolic enzymes
such as acetyl-CoA carboxylase, indicating a possible role for Snf1 in metabolic regulation. In
this article, we performed nuclear magnetic resonance (NMR) spectroscopy to profile the
metabolic changes induced by Snf1 under environmental stress. According to our NMR data,
we suggest that Snf1 plays a role in regulating cellular concentrations of a variety of metab-
olites during environmental stress responses.
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Since yeast mainly uses glucose as a carbon source,
sensing of glucose levels is important for mediating
yeast energy metabolism. Sucrose non-fermenting 1
(Snf1)/AMP-activated protein kinase is a representa-
tive controller of energy status that maintains cellu-
lar energy homeostasis [1–3]. Snf1 is a regulatory
kinase that is highly conserved in eukaryotic cells
and plays a critical role in regulating a variety of
activators and repressors required for energy balance
mechanism [1–3]. In addition, Snf1 is involved in
the mediation of environmental stimuli such as salt
stress [4–11].

Snf1 phosphorylates and regulates metabolic
enzymes such as acetyl-CoA carboxylase, suggesting
a crucial role for Snf1 in metabolic control [12]. To
date, there have not been any reports describing the
metabolic changes induced by Snf1 during environ-
mental stress responses. Nuclear magnetic resonance
(NMR) spectroscopy is a useful technique for struc-
ture elucidation due to its various two-dimensional
measurements, which makes NMR an ideal tool for
metabolic analysis [13,14]. Here, we report that Snf1
regulates metabolic changes in response to environ-
mental stresses in Saccharomyces cerevisiae.

We investigated whether Snf1 is involved in
responses to multiple stresses such as salt, heat, and
energy (potassium cyanide (KCN), a specific inhibi-
tor of cytochrome c oxidase for ATP synthesis).

Consistent with previous reports [9,11], the Dsnf1
mutant showed increased sensitivity to salt and heat
stresses (Supplementary Figure S1). In addition, our
result revealed that Snf1 is required for a proper
response against KCN stress (Supplementary Figure
S1). Snf1 functions as a key sensor of energy status
for the maintenance of cellular energy homeostasis
[2,3,9]. Therefore, our work indicates that Snf1
might play a role in energy regulation as a protect-
ive mechanism under various stress conditions.

To explore changes in yeast stress responses from
a metabolic perspective, we profiled the metabolites
in yeast cells using 1H-NMR spectroscopy (Figure 1
and Supplementary Table S1). 1H-NMR spectros-
copy and raw data processing were essentially per-
formed as described previously [15]. Chemical shifts
of signals were assigned to the metabolites in the
area of amino acids, organic acids, carbohydrates,
and nucleotide derivatives. On the basis of the
1H-NMR spectra, we identified 36 metabolites in the
whole cell extracts with chemical shifts and coupling
patterns (Figure 1 and Supplementary Table S1).
The main variations are summarized in the form of
a heatmap shown in Figure 2(A) and Supplementary
Table S2. 1H-NMR spectra of wild-type and Dsnf1
exhibited differentiated resonance spectra under
various stress conditions. Partial least squares-dis-
criminant analysis (PLS-DA), a supervised
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Figure 1. 1H-NMR spectra of the metabolites of S. cerevisiae. 1H-NMR spectroscopy and raw data processing were essentially
performed as described previously [15].

Figure 2. Heatmap of main metabolite variations (A) and PLS-DA score plot (B) in wild-type and Dsnf1 under various stress
conditions. The S. cerevisiae wild-type (W303-1A) and Dsnf1 strains were grown on YPD medium. Yeast cells were treated with
0.8 M NaCl, 5mM KCN, or 40 �C for 1 h, and then subjected to 1H-NMR. Similar results were obtained from three independent
experiments. 1H-NMR spectroscopy and raw data processing were essentially performed as described previously [15].
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multivariate data analysis method, was used to
investigate intrinsic variation in 1H-NMR data. In
the wild-type PLS-DA score plots, two principal
components, PC1 and PC2, were calculated with the
R2Y and Q2Y parameters of 0.95 and 0.77, and the
Dsnf1 mutant PLS-DA score plots were calculated
with the R2Y and Q2Y parameters of 0.93 and 0.63,
respectively (Figure 2(B)). As shown in Figure 2(B),
the PLS-DA score plot of 1H-NMR spectra showed
a clear separation between wild-type and Dsnf1
under various stress conditions.

Our 1H-NMR data suggest that Snf1 plays a role
in the regulation of metabolic changes induced by
stressful environments in yeast (Figure 2).
Especially, cellular concentrations of glucose and
trehalose are increased in wild-type under salt stress,
but not in Dsnf1 (Figure 3). Trehalose functions as a
representative osmolyte in order to cope with
changes in osmotic pressure [16]. Meanwhile, main-
tenance of ATP balance is vital for all cells and the
hydrolysis of ATP is the main energy source. In
response to salt stress, a rapid increase in cellular
ATP metabolism may reflect the higher energy
demands required for salt stress tolerance [17,18].
Under normal condition, glucose production was
slightly reduced in Dsnf1 compared to wild-type
(WT). In response to salt stress, glucose production
was increased in WT, however it was not increased
in Dsnf1 at all (Figure 3). At present, we do not
know whether Snf1 is involved in the mechanism of
directly increasing glucose production in response
to salt stress. Nevertheless, it can be assumed that
Snf1 is related to glucose production under salt
stress response. Our 1H-NMR data will make a

contribution to our understanding of metabolic
changes induced by Snf1 during environmental
stress in yeast.
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