• Title/Summary/Keyword: Nuclear factor-kappa B ($NF-{\kappa}B$)

Search Result 801, Processing Time 0.03 seconds

The Role of Yoga Intervention in the Treatment of Allergic Rhinitis: A Narrative Review and Proposed Model

  • Chauhan, Ripudaman Singh;Rajesh, S.K
    • CELLMED
    • /
    • v.10 no.3
    • /
    • pp.25.1-25.7
    • /
    • 2020
  • Allergic Rhinitis (AR) is an IgE (immunoglobin-E) mediated inflammatory condition of upper respiratory tract; main clinical features involve runny nose, sneezing, nasal obstruction, itching and watery eyes. AR is a global problem and has large variations in incidences, currently affects up to 20% - 40% of the population worldwide. It may not be a life-threatening disease per se but indisposition from the condition can be severe and has the potential to adversely affect the daily functioning of life. Classical yoga literature indicates that, components of yoga have been used to treat numerous inflammatory conditions including upper respiratory tract. A few yoga intervention studies reported improvement in lung capacity, Nasal air flow and symptoms of allergic rhinitis. This review examined various anti-inflammatory pathways mediated through Yoga that include downregulation of pro-inflammatory cytokines and upregulation of anti-inflammatory cytokines. The hypothalaminic-pitutary-adrenal (HPA) axis and vagal efferent stimulation has been reported to mediate anti-inflammatory effect. A significant reduction is also reported in other inflammatory biomarkers like- TNF-alpha, nuclear factor kappa B (NF-κB), plasma CRP and Cortisol level. Neti, a yogic nasal cleansing technique, reported beneficial effect on AR by direct physical cleansing of thick mucus, allergens, and inflammatory mediator from nasal mucosa resulting in improved ciliary beat frequency. We do not find any study showing effect of yoga on neurogenic inflammation. In summary, Integrated Yoga Therapy may have beneficial effect in reducing symptoms and improving quality of life for patients with allergic rhinitis. Yoga may reduce inflammation through mediating neuro-endocrino-immunological network. Future studies are needed to explore the mechanism how yoga might modulate immune inflammation cascade and neurogenic inflammation at the cellular level in relevance to allergic rhinitis; the effects of kriyas (yogic cleansing techniques) also need to be evaluated in early and late phase of AR. So the proposed model could guide future research.

Harmal Extract Induces Apoptosis of HCT116 Human Colon Cancer Cells, Mediated by Inhibition of Nuclear Factor-κB and Activator Protein-1 Signaling Pathways and Induction of Cytoprotective Genes

  • Elkady, Ayman I;Hussein, Rania A;El-Assouli, Sufian M
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.1947-1959
    • /
    • 2016
  • Background: Colorectal cancer (CRC) is a major cause of morbidity and mortality, being the second most common type of cancer worldwide in both men and women. It accounts yearly for approximately 9% of all new cases of cancers. Furthermore, the current chemotherapeutic regimens seem unsatisfactory, so that exploration of novel therapeutic modalities is needed. The present study was undertaken to investigate the inhibitory effects of a crude alkaloid extract (CAERS) of a medicinal herb, Rhazya stricta, on proliferation of CRC HCT116 cells and to elucidate mechanisms of action. To achieve these aims, we utilized MTT, comet, DNA laddering and gene reporter assays, along with Western blot and RT-PCR analyses. Results: We found that CAERS inhibited cell proliferation and induced apoptotic cell death in HCT116 cells. Hallmarks of morphological and biochemical signs of apoptosis were clearly evident. CAERS down-regulated DNA-binding and transcriptional activities of NF-${\kappa}B$ and AP-1 proteins, while up-regulating expression of the Nrf-2 protein. It also down-regulated expression levels of the ERK MAPK, Bcl-2, cyclin D1, CDK-4, survivin and VEGF and up-regulated levels of Bax, caspase-3/7 and -9, p53, p21, Nrf-2. Markedly, it promoted mRNA expression levels of cytoprotective genes including the hemeoxygenase-1, NAD(P)H quinine oxidoreductase 1 and UDP-glucuronyltransferase. Conclusions: These findings indicate that CAERS exerts antiproliferative action on CRC cells through induction of apoptotic mechanisms, and suggest CAERS could be a promising agent for studying and developing novel chemotherapeutic agents aimed at novel molecular targets for the treatment of CRC.

Anti-inflammatory Effect of the Processed Gardeniae Fructus in LPS-induced Macrophages (LPS로 유도된 대식세포에서 수치 치자의 항염효과)

  • An, Iseul;Kim, Sang Chan;Byun, Sung Hui;Lee, Jong Rok;Park, Sook Jahr
    • Herbal Formula Science
    • /
    • v.27 no.4
    • /
    • pp.245-255
    • /
    • 2019
  • Objective : Herbal processing is one of the traditional techniques used in Korean medicine to increase the effectiveness of herbs or reduce their toxicity. In this study, Gardeniae Fructus processed with ginger juice and alcohol was prepared to evaluate the anti-inflammatory effect on lipopolysaccharide (LPS)-induced macrophages. Methods : The processing of Gardeniae Fructus was performed by adding 40 % ginger juice or 10% alcohol to the total weight of Gardeniae Fructus and then roasting at 150℃ for 5 minutes. Cell viability was determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. To detect nitric oxide (NO) production, culture media were mixed with Griess reagent and measured the absorbance at 540 nm. Prostaglandin E2 (PGE2) and pro-inflammatory cytokines were detected by enzyme-linked immunosorbent assay (ELISA). Western blot was applied to monitor protein expression levels. Results : LPS-induced NO, PGE2 and inflammatory cytokines were decreased by the treatment of normal or processed Gardeniae Fructus ethanol extracts (GFE). Compared to normal GFE, the processed GFE showed a stronger inhibitory effect on the production of NO and PGE2. These inhibitory effect of GFE was due to the suppression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) mediated from the inhibition of nuclear factor kappa B (NF-κB). Furthermore, processed GFE showed more suppressive effects on the expression of iNOS, COX-2 and IκBα proteins than normal GFE. Conclusion : From these results, it was concluded that GFE had an improved anti-inflammatory effect compared to normal GFE. These results provide an objective evidences for the use of herbal processing in Korean medicine.

Gastroprotective Effect of Artemisia frigida Willd in HCl/Ethanol-induced Acute Gastritis (HCl/에탄올로 유발된 급성 위염에서 Artemisia frigida Willd의 위장 보호 효과)

  • Oh, Min Hyuck;Lee, Se Hui;Park, Hae-jin;Shin, Mi-rae;Sharav, Bold;Roh, Seong-soo
    • Korean Journal of Pharmacognosy
    • /
    • v.52 no.4
    • /
    • pp.242-250
    • /
    • 2021
  • Artemisia frigida Willd (AW, Fringed sagewort), which is widespread in Mongolia, is a well-known medicinal plant as a member of the Compositae family. This study aims to explore the gastroprotective effect of water extract of AW on 150 mM HCl/60% ethanol-induced acute gastritis in 5 week old male ICR mice. Total polyphenols, total flavonoid contents, and anti-oxidant activity in vitro in AW were evaluated. First, the gross area of gastric mucosal damage was measured. Then western blot analysis was conducted to determine the possible mechanisms of action underlying the effects of AW. AW administration decreased gastric mucosal damage. Moreover, the group with AW treatment effectively inhibited nicotinamide adenine dinucleotide phosphate (NADPH) oxidase expression associated with oxidative stress. AW treatment enhanced an anti-oxidant effect through the increase of anti-oxidant proteins. Besides, the increased expressions of inflammatory cytokines induced by nuclear factor-kappa B (NF-κB) activation are alleviated through AW treatment. Taken together, AW exerted a gastroprotective effect against gastric mucosal damage. These results indicate that AW could have the potential used as a natural therapeutic drug for the treatment of acute gastritis.

The Treatment Effect of Ulcerative Colitis of Supercritical Heat-Treated Radish Extracts

  • Kim, Hyun-Kyoung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.145-155
    • /
    • 2021
  • With the recent rapid improvement in the standards of life and westernization of dietary lifestyles, the consumption of high-calorie diets such as high-fat and high-protein red meat and instant foods has increased, while less vegetables containing dietary fiber are consumed. In addition to that, stress, erroneous dietary behaviors, and contaminated environments are linked to the risk of developing ulcerative colitis, which is on the rise. Another cause of ulcerative colitis is that involve laxative abuse, including repeated, frequent use of laxatives, and include such conditions as deteriorated bowel function, irritable bowel syndrome, diarrhea, intestinal inflammation, etc. The present study aimed to investigate the comparative evaluation of pharmacological efficacy between sulfasalazine alone and combination with herbal medicine on dextran sodium sulfate (DSS)-induced UC in mice. Balb/c mice received 5% DSS in drinking water for 7 days to induce colitis. Animals were divided into five groups (n = 9): group I-normal group, group II-DSS control group, group III-DSS + sulfasalazine (30 mg/kg), group IV-DSS + sulfasalazine (60 mg/kg), group V-DSS + sulfasalazine (30 mg/kg) + Radish Extract mixture (30 mg /kg) (SRE). DSS-treated mice developed symptoms similar to those of human UC, such as severe bloody diarrhea and weight loss. SRE supplementation, as well as sulfasalazine, suppressed colonic length and mucosal inflammatory infiltration. In addition, SRE treatment significantly reduced the expression of pro-inflammatory signaling molecules through suppression both mitogen-activated protein kinases (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways, and prevented the apoptosis of colon. Moreover, SRE administration significantly led to the up-regulation of antioxidant enzyme including SOD and Catalase. This is the first report that Radish extract mixture combined with sulfasalazine protects against experimental UC via the inhibition of both inflammation and apoptosis, very similar to the standard-of-care sulfasalazine.

Combination of red ginseng and velvet antler extracts prevents skin damage by enhancing the antioxidant defense system and inhibiting MAPK/AP-1/NF-κB and caspase signaling pathways in UVB-irradiated HaCaT keratinocytes and SKH-1 hairless mice

  • Van-Long Truong;Yeon-Ji Bae;Ji-Hong Bang;Woo-Sik Jeong
    • Journal of Ginseng Research
    • /
    • v.48 no.3
    • /
    • pp.323-332
    • /
    • 2024
  • Background: Studies have reported that the combination of two or more therapeutic compounds at certain ratios has more noticeable pharmaceutical properties than single compounds and requires reduced dosage of each agent. Red ginseng and velvet antler have been extensively used in boosting immunity and physical strength and preventing diseases. Thus, this study was conducted to elucidate the skin-protective potentials of red ginseng extract (RGE) and velvet antler extract (VAE) alone or in combination on ultraviolet (UVB)-irradiated human keratinocytes and SKH-1 hairless mice. Methods: HaCaT cells were preincubated with RGE/VAE alone or in combination for 2 h before UVB (30 mJ/cm2) irradiation. SKH-1 mice were orally given RGE/VAE alone or in combination for 15 days before exposure to single dose of UVB (600 mJ/cm2). Treated cells and treated skin tissues were collected and subjected to subsequent experiments. Results: RGE/VAE pretreatment alone or in combination significantly prevented UVB-induced cell death, apoptosis, reactive oxygen species production, and DNA damage in keratinocytes and SKH-1 mouse skins by downregulating mitogen-activated protein kinases/activator protein 1/nuclear factor kappa B and caspase signaling pathways. These extracts also strengthened the antioxidant defense systems and skin barriers in UVB-irradiated HaCaT cells and SKH-1 mouse skins. Furthermore, RGE/VAE co-administration appeared to be more effective in preventing UVB-caused skin injury than these extracts used alone. Conclusion: Overall, these findings suggest that the consumption of RGE/VAE, especially in combination, offers a protective ability against UVB-caused skin injury by preventing inflammation and apoptosis and enhancing antioxidant capacity.

Effect of Paeonia Lactiflora Pallas on Atopic Dermatitis-Related Inflammation in HaCaT Cell (작약이 HaCaT 세포에서 아토피 피부염 관련 염증 억제에 미치는 영향)

  • Lee, Hye-In;Kim, Eom Ji;Son, Dongbin;Joo, Byung Duk;Sohn, Youngjoo;Kim, Eun-Young;Jung, Hyuk-Sang
    • Korean Journal of Acupuncture
    • /
    • v.39 no.2
    • /
    • pp.43-53
    • /
    • 2022
  • Objectives : Paeonia lactiflora Pallas (PLP) have been reported to have pharmacological effects such as anti-inflammatory and analgesic. However, it is not yet known whether PLP extract has anti-inflammatory effect on HaCaT cells, human keratinocyte. Methods : To confirm the anti-inflammatory effect of PLP on keratinocyte, TNF-𝛼/IFN-𝛾-stimulated HaCaT cells were used. HaCaT cells were pre-treated with PLP for 1h before stimulation with TNF-𝛼/IFN-𝛾. Then HaCaT cells were stimulated with TNF-𝛼/IFN-𝛾 for 24 h, the cells and media were harvested to measure the inflammatory cytokines levels. Granulocyte-macrophage colony stimulating factor (GM-CSF), monocyte chemoattractant protein-1 (MCP-1), interleukin 1 beta (IL-1𝛽), and TNF-𝛼 were analyzed by enzyme-linked immunosorbent assay (ELISA), and the mRNA expression of thymus and activation-regulated chemokines (TARC), IL-6, and IL-8 were measured by reverse transcription-polymerase chain reaction (RT-PCR). We also investigated the inhibitory mechanism of the mitogen-activated protein kinase (MAPKs) including ERK, JNK, and p38 and nuclear factor-kappaB (NF-𝜅B) by PLP using western blot. Results : PLP did not show cytotoxicity in HaCaT cells. In TNF-𝛼/IFN-𝛾-stimulated HaCaT cells, PLP significantly inhibited the expression of GM-CSF, MCP-1 IL-1𝛽, TNF-𝛼, TARC and IL-6. PLP inhibited the phosphorylation of ERK and translocation of NF-𝜅B into the nucleus. Conclusions : These results indicate that PLP could ameliorate the TNF-𝛼/IFN-𝛾-stimulated inflammatory response through inhibition of MAPK and NF-kB signal pathway. This suggests that PLP could be used beneficial agent to improve skin inflammation.

Metformin or α-Lipoic Acid Attenuate Inflammatory Response and NLRP3 Inflammasome in BV-2 Microglial Cells (BV-2 미세아교세포에서 메트포르민 또는 알파-리포산의 염증반응과 NLRP3 인플라마솜 약화에 관한 연구)

  • Choi, Hye-Rim;Ha, Ji Sun;Kim, In Sik;Yang, Seung-Ju
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.3
    • /
    • pp.253-260
    • /
    • 2020
  • Alzheimer's disease (AD) is a chronic and progressive neurodegenerative disease that can be described by the occurrence of dementia due to a decline in cognitive function. The disease is characterized by the formation of extracellular and intracellular amyloid plaques. Amyloid beta (Aβ) is a hallmark of AD, and microglia can be activated in the presence of Aβ. Activated microglia secrete pro-inflammatory cytokines. Furthermore, S100A9 is an important innate immunity pro-inflammatory contributor in inflammation and a potential contributor to AD. This study examined the effects of metformin and α-LA on the inflammatory response and NLRP3 inflammasome activation in Aβ- and S100A9-induced BV-2 microglial cells. Metformin and α-LA attenuated inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). In addition, metformin and α-LA inhibited the phosphorylation of JNK, ERK, and p38. They activated the nuclear factor kappa B (NF-κB) pathway and the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome. Moreover, metformin and α-LA reduced the marker levels of the M1 phenotype, ICAM1, whereas the M2 phenotype, ARG1, was increased. These findings suggest that metformin and α-LA are therapeutic agents against the Aβ- and S100A9-induced neuroinflammatory responses.

Targeting Nrf2-Mediated Gene Transcription by Triterpenoids and Their Derivatives

  • Loboda, Agnieszka;Rojczyk-Golebiewska, Ewa;Bednarczyk-Cwynar, Barbara;Zaprutko, Lucjusz;Jozkowicz, Alicja;Dulak, Jozef
    • Biomolecules & Therapeutics
    • /
    • v.20 no.6
    • /
    • pp.499-505
    • /
    • 2012
  • Chemoprevention represents a strategy designed to protect cells or tissues against various carcinogens and carcinogenic metabolites derived from exogenous or endogenous sources. Recent studies indicate that plant-derived triterpenoids, like oleanolic acid, may exert cytoprotective functions via regulation of the activity of different transcription factors. The chemopreventive effects may be mediated through induction of the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor. Activation of Nrf2 by triterpenoids induces the expression of phase 2 detoxifying and antioxidant enzymes such as NAD(P)H quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1) - proteins which can protect cells or tissues against various toxic metabolites. On the other hand, inhibition of other transcription factors, like NF-${\kappa}B$ leads to the decrease in the pro-inflammatory gene expression. Moreover, the modulation of microRNAs activity may constitute a new mechanism responsible for valuable effects of triterpenoids. Recently, based on the structure of naturally occurring triterpenoids and with involvement of bioinformatics and computational chemistry, many synthetic analogs with improved biological properties have been obtained. Data from in vitro and in vivo experiments strongly suggest synthetic derivatives as promising candidates in the chemopreventive and chemotherapeutic strategies.

Protective Effects of Chijabaegpi-tang on Atopic Dermatitis in TNF-α/IFNγ-induced HaCaT Cells (피부각질세포에서 치자백피탕(梔子柏皮湯)의 아토피 피부염 개선효과)

  • Eun, So Young;Yoon, Jung Joo;Kim, Hye Yoom;Ahn, You Mee;Han, Byung Hyuk;Hong, Mi Hyeon;Son, Chan Ok;Na, Se Won;Lee, Yun Jung;Kang, Dae Gill;Lee, Ho Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.32 no.4
    • /
    • pp.226-231
    • /
    • 2018
  • Chijabaegpi-tang (CHG) is an oriental herbal medicine that has been used for its various pharmacological effects, which include anti-inflammatory, anti-oxidant and immunoregulation activities. In the present study, we investigated which skin inflammations are involved in the $TNF-{\alpha}/IFN{\gamma}$-induced HaCaT cells. We investigated the suppressive effect of CHG on $TNF-{\alpha}/IFN{\gamma}$-induced HaCaT cell production of the following chemokines: macrophage-derived chemokine (MDC)/CCL22; regulated on activation, normal T-cell expressed and secreted (RANTES)/CCL5; and interleukin-8 (IL-8); thymus and activation-regulated chemokine (TARC)/CCL17. The pre-treatment of HaCaT cells with CHG suppressed $TNF-{\alpha}/IFN{\gamma}$-induced nuclear transcription factor kappa-B ($NF-{\kappa}B$). In addition, CHG inhibited $TNF-{\alpha}/IFN{\gamma}$-induced phosphorylation of ERK and p38. $TNF-{\alpha}/IFN{\gamma}$ suppressed the expression of skin barrier proteins, including filaggrin (FLG), Involucrin (IVL) and loricrin (LOR). By contrast, CHG restored the expression of FLG, IVL and LOR. Taken together, our findings suggest that CHG could be a therapeutic agent for prevention of skin disease, including atopic dermatitis.