• Title/Summary/Keyword: Nuclear factor I-C

Search Result 173, Processing Time 0.025 seconds

Effect of Atractylodis Rhizoma Alba on Osteoclast Formation (백출의 파골세포 분화에 미치는 영향)

  • Park, Sung-Tae;Lee, Myeung-Su;Jeon, Byung-Hun;Park, Kie-In;Oh, Jae-Min
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.1
    • /
    • pp.109-114
    • /
    • 2011
  • Atractylodis Rhizoma Alba is commonly used herbal medicine and it has been known that has immuno-regualtory effects and anti-cancer effects. The inhibition of osteoclastogenesis is essential for the prevention and treatment of osteoporosis. The aim of this study was to evaluate the effects of Atractylodis Rhizoma Alba on osteoclast differentiation in vitro and on resorbing activity of osteoclast. Osteoclast formation was evaluated in bone marrow cells (BMC) in the presence or absence of Atractylodis Rhizoma Alba. The expression of c-fos, tartrate-resistant acid phosphatase (TRAP), OSCAR, DC-STAMP, cathepsin K, MafB and NFATc1 mRNA in osteoclast precursor were assessed by RT-PCR. The levels of TNF receptor-associated factor-6 (TRAF-6), c-fos and NFATc1 protein were assessed by Western blot analysis. Also the correlation with MAPKs and NF-${\kappa}B$ pathways were measured by using Western blot analysis. With bone resorption study, I tried to evaluate the inhibitory effects of Atractylodis Rhizoma Alba on mature osteoclast function. Atractylodis Rhizoma Alba inhibited the RANKL induced osteoclastic differentiation from bone marrow macrophage in a dose dependant manner without cellular toxicity. Gene expression of c-fos and NFATc1 was significantly down regulated with Atractylodis Rhizoma Alba treatment. Atractylodis Rhizoma Alba markedly inhibited the RANKL-induced osteoclastogenesis through suppression of nuclear factor kappa b (NF-${\kappa}B$) pathway, down stream pathway of p38, ERK and JNK pathway. Taken together, I concluded that Atractylodis Rhizoma Alba have beneficial effect on osteoporosis by inhibition of osteoclast differentiation and by inhibition of functioning osteoclast. Thus I expect that Atractylodis Rhizoma Alba could be a treatment option for osteoporosis.

Protective Effect of Protocatechuic Acid, Phenolic Compound of Momordica Charantia, against Oxidative Stress and Neuroinflammation in C6 Glial Cell (여주의 페놀성 화합물인 Protocatechuic Acid의 산화적 스트레스 개선 및 신경염증 보호 효과)

  • Kim, Ji-Hyun;Choi, Jung Ran;Cho, Eun Ju;Kim, Hyun Young
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.20 no.1
    • /
    • pp.10-19
    • /
    • 2020
  • Objectives: Oxidative stress-mediated neuroinflammation has been supposed as a crucial factor that contributes to the pathogenesis of many neurodegenerative diseases. In this study, we aimed to investigate the protective activity against oxidative stress and neuroinflammation of protocatechuic acid (PA), active phenolic compound from Momordica Charantia. Methods: Protective activity of PA from oxidative stress was performed under in vitro conditions. Our study investigated the protective mechanism of PA from neuroinflammation in cellular system using C6 glial cell. To investigate the improvement the effects on oxidative stress and neuroinflammation, we induced oxidative stress by H2O2 (100 μM) stimulation and induced neuroinflammation by treatment with lipopolysaccharide (LPS) (1 ㎍/mL) and interferon-gamma (IFN-γ) (10 ng/mL) in C6 glial cells. Results: PA showed strong radical scavenging effect against 1,1-dipenyl-2-picrylhydrazyl, hydroxy radical (·OH) and nitric oxide (NO). Under oxidative stress treated by H2O2, the result showed the increased mRNA expressions of oxidative stress markers such as nuclear factor-kappaB (NF-κB), cyclooxygenase (COX-2) and inducible nitric oxide (iNOS). However, the treatment of PA led to reduced mRNA expressions of NF-κB, COX-2 and iNOS. Moreover, PA attenuated the production of interleukin-6 and scavenged NO generated by both endotoxin LPS and IFN-γ together. Furthermore, it also reduced LPS and IFN-γ-induced mRNA expressions of iNOS and COX-2. Conclusions: In conclusion, our results collectively suggest that PA, phenolic compound of Momordica Charantia, could be a safe anti-oxidant and a promising anti-neuroinflammatory molecule for neurodegenerative diseases.

Anti-inflammatory Effects of Flavokavain C from Kava (Piper methysticum) Root in the LPS-induced Macrophages (LPS로 유도된 대식세포에서 카바뿌리로부터 분리한 Flavokavain C의 항염증 효과)

  • Park, Chung;Han, Jong-Min
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.4
    • /
    • pp.311-320
    • /
    • 2016
  • Kava (Piper methysticum, P. methysticum) is used as traditional herbal medicine for urogenital diseases, rheumatisms, gastrointestinal problems, respiratory irritations, and pulmonary pains. We identified a flavokavain C (FKC) from P. methysticum, which showed anti-inflammatory activity on nuclear factor ${\kappa}B$ (NF-${\kappa}B$)-dependent nitric oxide (NO) production and expression of inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-induced RAW264.7 macrophages. FKC inhibited accumulation of reactive oxygen species (ROS), such as hydrogen peroxide, and was able to dose-dependently reduce the LPS-induced NO production and the expression of various inflammation-associated genes (iNOS, IL-$1{\beta}$, IL-6) through inhibition of NF-${\kappa}B$ and MAPKs (ERK and JNK). In conclusion, these results indicate that FKC may have the potential to prevent inflammation process including NF-${\kappa}B$ and MAPKs pathways, and it could be applicable to functional cosmetics for anti-inflammation and antioxidant properties.

Inhibitory Effects of Rhizoma Arisaematis on Osteoclast Differentiation and Bone Resorption (파골세포의 분화와 뼈 흡수에 천남성의 억제 효과)

  • Lee, Myeung-Su;Lee, Chang-Hoon;Park, Kie-In;Kim, Ha-Young
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.1
    • /
    • pp.65-70
    • /
    • 2011
  • Osteoclasts play a critical role in bone-related diseases such as osteoporosis and rheumatoid arthritis by resorbing the bone. Recently, natural products from plants have been extensively studied as therapeutic drugs to treat and prevent various diseases. Here, we examined the effects of rhizoma arisaematis on ostoclast differentiation and bone resorption. We showed that rhizoma arisaematis significantly suppressed receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL)-induced osteoclast differentiation in bone marrow-derived macrophages (BMMs) in a dose dependent manner but have little or no effect on the cytotoxicity of BMMs and RAW264.7 cells. We found that rhizoma arisaematis iarrow-ed the RANKL-induced c-Fos and nuclear factor of activated T cells (NFAT)c1, which is a master regulator of osteoclast differentiation. Furthermore, rhizoma arisaematis suppressed the mRNA expression of tartrate resistant-acid phosphatase and cathepsin K iaduced by RANKL in BMMs. in y chanistic studies, rhizoma arisaematis considerably iarrow-ed I-${\kappa}B$ degradation, which is a negative regulator of NF-${\kappa}B$, but iaduced the phosphderlation of p-38, ERK, and JNK.MMlso, we found that rhizoma arisaematis significantly iarrow-ed osteoclastic bone resorption. Taken tarether, our results suggest that rhizoma arisaematis suppresses osteoclast differentiation through down-regulatd the mRANKL-induced c-Fos and NFATc1 expression and iarrow-s bone resorption.

Mangiferin isolated from the rhizome of Anemarrhena asphodeloides inhibits the LPS-induced nitric oxide and prostagladin $E_2$ via the $NF-{\kappa}B$ inactivation in inflammatory macrophages

  • Shin, Ji-Sun;Noh, Young-Su;Kim, Dong-Hyun;Cho, Young-Wuk;Lee, Kyung-Tae
    • Natural Product Sciences
    • /
    • v.14 no.3
    • /
    • pp.206-213
    • /
    • 2008
  • This study was designed to investigate the anti-inflammatory effects of mangiferin isolated from the rhizome of Anemarrhena asphodeloides, a natural polyphenol, on lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. Mangiferin dose-dependently inhibited LPS-induced nitric oxide (NO) and prostaglandin $E_2\;(PGE_2)$ productions in RAW 264.7 macrophages and peritoneal macrophages isolated from C57BL/6 mice. Consistent with these data, mangiferin suppressed the LPS-induced expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein and mRNA levels in a concentration-dependent manner, as determined by Western blotting and RT-PCR, respectively. In addition, the release of tumor necrosis $factor-{\alpha}$($TNF-{\alpha}$) and interleukin-6 (IL-6), and the mRNA expression levels of these cytokines were reduced by mangiferin in a dose-dependent manner. Moreover, mangiferin effectively inhibited the transcriptional activation of nuclear factor-kappa B $(NF-{\kappa}B)$. These results suggest that the anti-inflammatory properties of mangiferin are caused by iNOS, COX-2, $TNF-{\alpha}$, and IL-6 down-regulation due to $(NF-{\kappa}B)$ inhibition in RAW 264.7 macrophages.

Research on the Anti-Breast Cancer and Anti-Inflammatory Effects of Chungganhaewool-tang and Shipyeukmiyeugi-eum (청간해울탕(淸肝解鬱湯)과 십륙미유기음(十六味流氣飮)의 유방암에 대한 항암, 항염 효능 연구)

  • Ryu, Hyo-Kyung;Jung, Min-Jae;Cho, Seong-Hee
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.35 no.3
    • /
    • pp.1-23
    • /
    • 2022
  • Objectives: The purpose of this study is to evaluate anti-breast cancer and anti-inflammatory effects of Chungganhaewool-tang and Shipyeukmiyeugi-eum. Methods: MDA-MB-231 cells were used to measure cytotoxicity, Reactive oxygen species (ROS) production, protein expression amounts of Bcl-2-associated X protein (Bax), B-cell lymphoma 2 (Bcl-2), B-cell lymphoma-extra large (Bcl-xl), Cytochrome C Caspase-3, Caspase-7, Caspase-9, Poly ADP-ribose polymerase (PARP), Nuclear factor erythroid-2-related factor 2 (Nrf2), Heme oxygenase-1 (HO-1) and NAD (P) H Quinone Oxidoreductase 1 (NQO1) to evaluate the anti-breast cancer effects of Chungganhaewool-tang (CHT) and Shipyeukmiyeugi-eum (SYE), and THP-1 cells, differentiated into macrophage and induced inflammation with Lipopolysaccharide (LPS), were used to measure production amounts of ROS, Nitric oxide (NO), and protein expression amounts of Inducible nitric oxide synthase (iNOS), Cyclooxygenase (COX-2), Interleukin-1 beta (IL-1β), Interleukin-6 (IL-6) and Tumor necrosis factor-alpha (TNF-α) to evaluate the anti-inflammatory effects of CHT and SYE. Results: CHT and SYE reduced MDA-MB-231 cell counts, increased protein expression of Bax and Cytochrome C, and decreased protein expression of Bcl-2, Bcl-xl. The protein expression amounts of Caspase-3, 7, and 9 decreased, but amounts of the active form, cleaved Caspase-3, 7, and 9, increased. In addition, PARP protein expression decreased, the amount of PARP protein in the cleaved form increased, and the amount of protein expressions of Nrf2 and HO-1 decreased, but NQO1 showed no significant difference. In THP-1 cells CHT and SYE reduced ROS and NO, and reduced protein expressions of iNOS, COX-2, IL-1, and TNF-α, but only SYE groups reduced IL-6. Conclusions: This study suggests that CHT and SYE have potential to be used as treatments for breast cancer.

Suggestion of Efficient High Dose Spent Filter Handling and Compaction Equipment

  • Lee, Kyungho;Chung, Sewon;Park, Seonghee;Kim, HuiGyeong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.2
    • /
    • pp.243-253
    • /
    • 2022
  • Spent filters with a high radiation dose rate of 2 mSv·hr-1 or more are not easily managed. So far, the Korean policy for spent filter disposal is to store them temporarily at nuclear power plants until the waste filters can be easily managed. Nuclear power plant decommissioning in Korea is starting with Kori unit 1. Volume reduction of waste generated during decommissioning can reduce the cost and optimize the space usage at disposal site. Therefore, efficient volume reduction is a very important factor during the decommissioning process. A conceptual method, based on the experiences of developing 200 and 800 ton compactors at Orion EnC, has been developed considering worker exposure with the followings a crusher (upgrade of compaction efficiency), an automatic dose measuring system with a NaI(Tl) detector, a shield box, an inner drum to prepare for easy handling of drums and packaging, a 30 ton compactor, and an automatic robot system. This system achieves a volume reduction ratio of up to 85.7%; hence, the system can reduce the disposal cost and waste volume. It can be applied to other types of wastes that are not easily managed due to high dose rates and remote control operation necessity.

The Probabilistic Analysis on the Containment Failure by Hydrogen Burning at Severe Accidents in Nuclear Power Plants (원자력발전소 중대사고시 수소연소로 인한 격납용기 파손에 대한 확률적인 분석)

  • Park, I.K.;Moon, J.H.;Park, G.C.
    • Nuclear Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.411-419
    • /
    • 1994
  • The containment failure probability due to hydrogen burning during severe accidents proceeding in a low pressure sequence is calculated using Monte Carlo method. The probability distribution functions for this Monte Carlo calculation is obtained from the statistical method. The calculations are performed for Kori unit 2, and the sensitivity studies on the input variables-the amount of hydrogen generated at SFD, cerium diameter, cerium length, oxidation rate at FCI, and the amount of hydrogen generated during MCCI-are also performed. It is revealed that SFD is the main factor in hydrogen generation, but the other sources also cannot be neglected. The containment failure probability due to the hydrogen burning lies within 6% in case of Kori unit 2.

  • PDF

Supplementation with psyllium seed husk reduces myocardial damage in a rat model of ischemia/reperfusion

  • Lim, Sun Ha;Lee, Jongwon
    • Nutrition Research and Practice
    • /
    • v.13 no.3
    • /
    • pp.205-213
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Myocardial infarction (MI) is caused by extensive myocardial damage attributed to the occlusion of coronary arteries. Our previous study in a rat model of ischemia/reperfusion (I/R) demonstrated that administration of arabinoxylan (AX), comprising arabinose and xylose, protects against myocardial injury. In this study, we undertook to investigate whether psyllium seed husk (PSH), a safe dietary fiber containing a high level of AX (> 50%), also imparts protection against myocardial injury in the same rat model. MATERIALS/METHODS: Rats were fed diets supplemented with PSH (1, 10, or 100 mg/kg/d) for 3 d. The rats were then subjected to 30 min ischemia through ligation of the left anterior descending coronary artery, followed by 3 h reperfusion through release of the ligation. The hearts were harvested and cut into four slices. To assess infarct size (IS), an index representing heart damage, the slices were stained with 2,3,5-triphenyltetrazolium chloride (TTC). To elucidate underlying mechanisms, Western blotting was performed for the slices. RESULTS: Supplementation with 10 or 100 mg/kg/d of PSH significantly reduces the IS. PSH supplementation (100 mg/kg/d) tends to reduce caspase-3 generation and increase BCL-2/BAX ratio. PSH supplementation also upregulates the expression of nuclear factor erythroid 2-related factor 2 (NRF2), and its target genes including antioxidant enzymes such as glutathione S-transferase mu 2 (GSTM2) and superoxide dismutase 2 (SOD2). PSH supplementation upregulates some sirtuins ($NAD^+$-dependent deacetylases) including SIRT5 (a mitochondrial sirtuin) and SIRT6 and SIRT7 (nuclear sirtuins). Finally, PSH supplementation upregulates the expression of protein kinase A (PKA), and increases phosphorylated cAMP response element-binding protein (CREB) (pCREB), a target protein of PKA. CONCLUSIONS: The results from this study indicate that PSH consumption reduces myocardial I/R injury in rats by inhibiting the apoptotic cascades through modulation of gene expression of several genes located upstream of apoptosis. Therefore, we believe that PSH can be developed as a functional food that would be beneficial in the prevention of MI.

Formosanin C attenuates lipopolysaccharide-induced inflammation through nuclear factor-κB inhibition in macrophages

  • Yin, Limin;Shi, Chaohong;Zhang, Zhongchen;Wang, Wensheng;Li, Ming
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.5
    • /
    • pp.395-401
    • /
    • 2021
  • Extended inflammation and cytokine production pathogenically contribute to a number of inflammatory disorders. Formosanin C (FC) is the major diosgenin saponin found in herb Paris formosana Hayata (Liliaceae), which has been shown to exert anti-cancer and immunomodulatory functions. In this study, we aimed to investigate anti-inflammatory activity of FC and the underlying molecular mechanism. RAW264.7 macrophages were stimulated with lipopolysaccharide (LPS) or pretreated with FC prior to being stimulated with LPS. Thereafter, the macrophages were subjected to analysis of the expression levels of pro-inflammatory mediators, including nitric oxide (NO), prostaglandin E2 (PGE), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6, as well as two relevant enzymes, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). The analysis revealed that FC administration blunted LPS-induced production of NO and PGE in a dose-dependent manner, while the expression of iNOS and COX-2 at both mRNA and protein levels was inhibited in LPS-stimulated macrophages pre-treated with FC. Moreover, LPS stimulation upregulated mRNA expression and medium release of TNF-α, IL-1β, and IL-6, whereas this effect was blocked upon FC pre-administration. Mechanistic studies showed that inhibitory effects of FC on LPS-induced inflammation were associated with a downregulation of IκB kinase, IκB, and p65/NF-κB pathway. Taken together, these data suggest that FC possesses an inflammation-suppressing activity, thus being a potential agent for the treatment of inflammation-associated disorders.