• 제목/요약/키워드: Nuclear factor E2-related factor 2

검색결과 126건 처리시간 0.036초

마치현 70% 에탄올 추출물의 Heme Oxygenase-1 발현을 통한 산화적 스트레스에 대한 사람각질형성세포 보호 효과 (The Cytoprotective Action of Portulaca oleracea 70% EtOH Extracts via the Heme Oxygenase-1 on Hydrogen Peroxide-induced Oxidative Stress in Human Keratinocyte HaCaT Cells)

  • 서승희;정길생
    • 생약학회지
    • /
    • 제46권2호
    • /
    • pp.116-122
    • /
    • 2015
  • Keratinocytes are first barrier against outer challenges on skin. However, it is still largely unknown about effective protectors against ultraviolet B (UVB), and oxidative stress in human keratinocyte, HaCaT cells. Inducible heme oxygenase (HO)-1 acts against oxidants that are thought to play a role in the pathogenesis of skin disorders. Therefore, the purpose of this study was to evaluate the effect of Portulaca oleracea 70% EtOH extracts against hydrogen peroxide (H2O2)-induced oxidative stress in human keratinocytes, HaCaT cells. P. oleracea 70% EtOH extracts showed the potent protective effects on H2O2-induced toxicity by induced the expression of HO-1 in human keratinocyte, HaCaT cells. Furthermore, P. oleracea 70 % EtOH extracts caused the nuclear accumulation of nuclear factor E2-related factor 2 (Nrf2) in human keratinocytes, HaCaT cells. In addition, we found that treatment with c-Jun N-terminal kinase (JNK) inhibitor (SP600125) reduced P. oleracea 70% EtOH extracts-induced HO-1 expression, and JNK inhibitor (SP600125) also inhibited protective effects by P. oleracea 70% EtOH extracts. Therefore, these results suggest that P. oleracea 70 % EtOH extracts increases cellular resistance to H2O2-induced oxidative injury in human keratinocyte, HaCaT cells, presumably through JNK pathway-Nrf2-dependent HO-1 expression.

N-acetyl cysteine inhibits H2O2-mediated reduction in the mineralization of MC3T3-E1 cells by down-regulating Nrf2/HO-1 pathway

  • Lee, Daewoo;Kook, Sung-Ho;Ji, Hyeok;Lee, Seung-Ah;Choi, Ki-Choon;Lee, Kyung-Yeol;Lee, Jeong-Chae
    • BMB Reports
    • /
    • 제48권11호
    • /
    • pp.636-641
    • /
    • 2015
  • There are controversial findings regarding the roles of nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway on bone metabolism under oxidative stress. We investigated how Nrf2/HO-1 pathway affects osteoblast differentiation of MC3T3-E1 cells in response to hydrogen peroxide (H2O2), N-acetyl cysteine (NAC), or both. Exposing the cells to H2O2 decreased the alkaline phosphatase activity, calcium accumulation, and expression of osteoblast markers, such as osteocalcin and runt-related transcription factor-2. In contrast, H2O2 treatment increased the expression of Nrf2 and HO-1 in the cells. Treatment with hemin, a chemical HO-1 inducer, mimicked the inhibitory effect of H2O2 on osteoblast differentiation by increasing the HO-1 expression and decreasing the osteogenic marker genes. Pretreatment with NAC restored all changes induced by H2O2 to near normal levels in the cells. Collectively, our findings suggest that H2O2-mediated activation of Nrf2/HO-1 pathway negatively regulates the osteoblast differentiation, which is inhibited by NAC.

Pear pomace alleviated atopic dermatitis in NC/Nga mice and inhibited LPS-induced inflammation in RAW 264.7 macrophages

  • You, Mikyoung;Wang, Ziyun;Kim, Hwa-Jin;Lee, Young-Hyun;Kim, Hyeon-A
    • Nutrition Research and Practice
    • /
    • 제16권5호
    • /
    • pp.577-588
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Poorly regulated inflammation is believed to be the most predominant factor that can result in a wide scope of diseases including atopic dermatitis (AD). Despite many studies on the effect of pear pomace in obesity-related disorders including dysregulated gut microbiota, the protective effect of pear pomace in AD is still unknown. This study aimed to evaluate the effect of pear pomace ethanol extract (PPE) on AD by inhibiting inflammation. MATERIALS/METHODS: In the in vivo experiment, 2, 4-dinitrochlorobenzene (DNCB) was applied to NC/Nga mice to induce AD-like skin lesions. After the induction, PPE was administered daily by oral gavage for 4 weeks. The clinical severity score, serum IgE levels, spleen weight, histological changes in dorsal skin, and inflammation-related proteins were measured. In the cell study, RAW 264.7 cells were pretreated with PPE before stimulation with lipopolysaccharide (LPS). Nitrite oxide (NO) production and nuclear factor kappa B (NF-𝛋B) protein expression were detected. RESULTS: Compared to the AD control (AD-C) group, IgE levels were dramatically decreased via PPE treatment. PPE significantly reduced scratching behavior, improved skin symptoms, and decreased ear thickness compared to the AD-C group. In addition, PPE inhibited the DNCB-induced expression of inducible nitrite oxide synthase (iNOS), the receptor for advanced glycation end products, extracellular signal-regulated kinase (ERK) 1/2, and NF-𝛋B. PPE inhibited the LPS-induced overproduction of NO and the enhanced expression of iNOS and cyclooxygenase-2. Moreover, the phosphorylation of ERK1/2 and NF-𝛋B in RAW 264.7 cells was suppressed by PPE. CONCLUSIONS: These results suggest that PPE could be explored as a therapeutic agent to prevent AD.

사백산 물 추출물과 30% EtOH 추출물의 항염증 효과 비교연구 (The Comparison between Sabaek-san Water and 30% EtOH Extracts for Anti-inflammatory Effects)

  • 이동성;최현규;김경수;김동철;민홍기;리빈;김종수;박준형;오현철;김윤철
    • 약학회지
    • /
    • 제56권4호
    • /
    • pp.240-247
    • /
    • 2012
  • Sabaek-san has been used for the treatment of inflammatory diseases derived from the cold with high fever, cough, and lung dysfunction in Korea and China. There is no study for the comparison between different solvent extracts of Sabaek-san. We made two samples, one is Sabaek-san water extract (SBSW) and the other is Sabaek-san 30% EtOH extract (SBSE). Both extracts inhibited inducible nitric oxide synthase(iNOS) protein, reduced iNOS-derived nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Also, they reduced tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and interleukin-$1{\beta}$ (IL-$1{\beta}$) production. These anti-inflammatory effects caused by induction of heme oxygenase (HO)-1. HO-1 enzyme plays an important role of cellular anti-oxidant and anti-inflammatory systems. The induction of HO-1 is primarily regulated at the transcriptional level, and its induction by various inducers is related to the nuclear transcription factor-E2-related factor 2 (Nrf2). However, it is worth taking note that SBSE has more powerful anti-inflammatory effects than SBSW. In this study we suggest that different solvent extraction makes different therapeutic actions.

대식세포에서 Nrf2/HO-1경로를 통한 청심연자음의 항산화효과 (Anti-oxidative Effect of Chungsimyeonja-um (CSYJE) via Nrf2/HO-1 Pathway Activity in Lipopolysaccharide (LPS) Induced RAW 264.7 Macrophages)

  • 전선홍;오솔라;김소정;전보희;성진영;김용민
    • 대한화장품학회지
    • /
    • 제46권3호
    • /
    • pp.253-263
    • /
    • 2020
  • 활성산소종(reactive oxygen species, ROS)은 우리 몸의 항상성 유지에 있어 중요한 역할을 한다. 그러나 과도한 ROS의 생성은 단백질, 지질, 핵산과 같은 세포 구성성분을 손상시키고 피부노화를 촉진시킨다. 이에 본 연구에서는 과도한 산화 스트레스를 예방하기 위해 Chungsimyeonja-um (CSYJE)의 항산화 효과를 확인하였다. 먼저 DPPH 및 ABTS assay를 실시하여 CSYJE의 항산화 효과를 확인한 결과 농도 의존적으로 radical 소거 활성을 확인하였다. 세포생존율 확인을 위해 MTT assay를 실시한 결과 1,000 ㎍/mL 농도에서 세포 독성이 없음을 확인하였다. 항산화 관련 단백질인 nuclear-E2-related factor 2 (Nrf2), Heme oxygenase-1 (HO-1)의 발현 수준을 확인하기 위해 western blotting을 실시한 결과 농도 의존적으로 발현이 증가하는 것을 확인하였다. 세포 내 ROS유발 물질인 lipopolysaccharide (LPS)로 ROS를 유도한 후, ROS생성 억제효과를 확인하기 위해 DCF-DA 염색법을 실시한 결과 농도 의존적으로 ROS 생성 억제효과를 확인하였으며 ROS의 생성으로 인한 염증성 사이토카인과 염증인자의 mRNA발현 수준을 확인하기 위해 real-time RT-PCR을 실시한 결과 농도 의존적으로 염증성 사이토카인과 염증인자의 mRNA 발현을 억제시켰다. 따라서, 본 연구는 Nrf2/HO-1 신호 전달 경로 활성을 통해 CSYJE의 항산화효과를 확인했으며 이는 CSYJE가 활성산소를 억제하여 항산화 화장품의 재료로서 사용될 수 있음을 시사한다.

Preoperative Nodal 18F-FDG Avidity Rather than Primary Tumor Avidity Determines the Prognosis of Patients with Advanced Gastric Cancer

  • Kwon, Hyun Woo;An, Liang;Kwon, Hye Ryeong;Park, Sungsoo;Kim, Sungeun
    • Journal of Gastric Cancer
    • /
    • 제18권3호
    • /
    • pp.218-229
    • /
    • 2018
  • Purpose: This study investigated whether the metabolic avidity of primary tumors and/or metastatic lymph nodes (LNs) measured by $^{18}F$-fluorodeoxyglucose ($^{18}F-FDG$) positron emission tomography/computed tomography (PET/CT) was related to survival after surgery in patients with advanced gastric cancer (AGC). Materials and Methods: One hundred sixty-eight patients with AGC who underwent preoperative $^{18}F-FDG$ PET/CT and curative resection were included. The $^{18}F-FDG$ avidity of the primary gastric tumor and LNs was determined quantitatively and qualitatively. The diagnostic performance of $^{18}F-FDG$ PET/CT was calculated, and the prognostic significance of $^{18}F-FDG$ avidity for recurrence-free survival (RFS) and overall survival (OS) was assessed. Results: In all, 51 (30.4%) patients experienced recurrence, and 32 (19.0%) died during follow-up (median follow-up duration, 35 months; range, 3-81 months); 119 (70.8%) and 33 (19.6%) patients showed $^{18}F-FDG$-avid primary tumors and LNs, respectively. $^{18}F-FDG$ PET/CT showed high sensitivity (73.8%) for the detection of advanced pathologic T ($pT{\geq}3$) stage and high specificity (92.2%) for the detection of advanced pN (${\geq}2$) stage. $^{18}F-FDG$ avidity of LNs was significantly associated with RFS (P=0.012), whereas that of primary tumors did not show significance (P=0.532). Univariate and multivariate analyses revealed that $^{18}F-FDG$ avidity of LNs was an independent prognostic factor for RFS (hazard ratio=2.068; P=0.029). Conclusions: $^{18}F-FDG$ avidity of LNs is an independent prognostic factor for predicting RFS. Preoperative $^{18}F-FDG$ PET/CT can be used to determine the risk and prognosis of patients with AGC after curative resection.

Transcriptional Regulation of the AP-1 and Nrf2 Target Gene Sulfiredoxin

  • Soriano, Francesc X.;Baxter, Paul;Murray, Lyndsay M.;Sporn, Michael B.;Gillingwater, Thomas H.;Hardingham, Giles E.
    • Molecules and Cells
    • /
    • 제27권3호
    • /
    • pp.279-282
    • /
    • 2009
  • "Two-cysteine" peroxiredoxins are antioxidant enzymes that exert a cytoprotective effect in many models of oxidative stress. However, under highly oxidizing conditions they can be inactivated through hyperoxidation of their peroxidatic active site cysteine residue. Sulfiredoxin can reverse this hyperoxidation, thus reactivating peroxiredoxins. Here we review recent investigations that have shed further light on sulfiredoxin's role and regulation. Studies have revealed sulfiredoxin to be a dynamically regulated gene whose transcription is induced by a variety of signals and stimuli. Sulfiredoxin expression is regulated by the transcription factor AP-1, which mediates its up-regulation by synaptic activity in neurons, resulting in protection against oxidative stress. Furthermore, sulfiredoxin has been identified as a new member of the family of genes regulated by Nuclear factor erythroid 2-related factor (Nrf2) via a conserved cis-acting antioxidant response element (ARE). As such, sulfiredoxin is likely to contribute to the net antioxidative effect of small molecule activators of Nrf2. As discussed here, the proximal AP-1 site of the sulfiredoxin promoter is embedded within the ARE, as is common with Nrf2 target genes. Other recent studies have shown that sulfiredoxin induction via Nrf2 may form an important part of the protective response to oxidative stress in the lung, preventing peroxiredoxin hyperoxidation and, in certain cases, subsequent degradation. We illustrate here that sulfiredoxin can be rapidly induced in vivo by administration of CDDO-TFEA, a synthetic triterpenoid inducer of endogenous Nrf2, which may offer a way of reversing peroxiredoxin hyperoxidation in vivo following chronic or acute oxidative stress.

A549세포에 대한 목향추출물의 ROS 매개 세포독성 (Saussurea Lappa Radix-induced cytotoxicity via ROS generation in A549 lung cancer cells)

  • 이영준;구세광;강수진
    • 대한예방한의학회지
    • /
    • 제17권2호
    • /
    • pp.169-178
    • /
    • 2013
  • Objectives : Many cancers acquired resistance to chemotherapy, thus limiting its anticancer efficacy. It is known that Glutathione (GSH) is related to the development of drug resistance. The expression of GSH synthesizing glutamylcysteine ligase (GCL) was controlled by nuclear factor-E2-related factor(Nrf2). Previous studies showed that pharmacological depletion of GSH results in ROS increase, apoptotic response, and sensitization to oxidizing stimuli. In the current study, we examined Saussurea Lappa (SL) have the inhibitory effect on Nrf2 activity using human lung cancer A549 cells overexpressing Nrf2. Methods : Cell viability of A549 cells on SL treatment was determined by MTT assay. To detect the apeptosis in SL-treated A549 cells, sub-G1 population was measured by flow cytometry analysis (FACS). The level ROS was determined by FACS and fluorescence microscopy. To investigate whether SL have effect the suppression on Nrf2, we performed western blotting analysis. The GSH content was measured since GSH plays an important role in response to oxidative stress and was regulated by Nrf2. Results : A549 cells treated with an SL extract showed a substantial decrease in cell viability, along with a concomitant increase in apoptosis compared to untreated cells. Treatment of the SL extract led to increased Reactive oxygen species (ROS) production and a suppression of Nrf2. In addition, the antioxidant NAC attenuated SL-induced ROS generation, Nrf2 inhibition, and apoptosis. Taken together, these data show that the SL extract induced the production of ROS, and the inhibition of Nrf2, consequently resulting in A549 cell death. Conclusions : These results suggest that SL might be an effective agent to enhance anticancer drug sensitivity via Nrf2 inhibition.

Induction of heme oxygenase-1 with dietary quercetin reduces obesity-induced hepatic inflammation through macrophage phenotype switching

  • Kim, Chu-Sook;Choi, Hye-Seon;Joe, Yeonsoo;Chung, Hun Taeg;Yu, Rina
    • Nutrition Research and Practice
    • /
    • 제10권6호
    • /
    • pp.623-628
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Obesity-induced steatohepatitis accompanied by activated hepatic macrophages/Kupffer cells facilitates the progression of hepatic fibrinogenesis and exacerbates metabolic derangements such as insulin resistance. Heme oxyganase-1 (HO-1) modulates tissue macrophage phenotypes and thus is implicated in protection against inflammatory diseases. Here, we show that the flavonoid quercetin reduces obesity-induced hepatic inflammation by inducing HO-1, which promotes hepatic macrophage polarization in favor of the M2 phenotype. MATERIALS/METHODS: Male C57BL/6 mice were fed a regular diet (RD), high-fat diet (HFD), or HFD supplemented with quercetin (HF+Que, 0.5g/kg diet) for nine weeks. Inflammatory cytokines and macrophage markers were measured by ELISA and RT-PCR, respectively. HO-1 protein was measured by Western blotting. RESULTS: Quercetin supplementation decreased levels of inflammatory cytokines ($TNF{\alpha}$, IL-6) and increased that of the anti-inflammatory cytokine (IL-10) in the livers of HFD-fed mice. This was accompanied by upregulation of M2 macrophage marker genes (Arg-1, Mrc1) and downregulation of M1 macrophage marker genes ($TNF{\alpha}$, NOS2). In co-cultures of lipid-laden hepatocytes and macrophages, treatment with quercetin induced HO-1 in the macrophages, markedly suppressed expression of M1 macrophage marker genes, and reduced release of MCP-1. Moreover, these effects of quercetin were blunted by an HO-1 inhibitor and deficiency of nuclear factor E2-related factor 2 (Nrf2) in macrophages. CONCLUSIONS: Quercetin reduces obesity-induced hepatic inflammation by promoting macrophage phenotype switching. The beneficial effect of quercetin is associated with Nrf2-mediated HO-1 induction. Quercetin may be a useful dietary factor for protecting against obesity-induced steatohepatitis.

Oxya chinensis sinuosa (OC) Extracts Protects ARPE-19 Cells against Oxidative Stress via Activation of the Mitogen-Activated Protein Kinases (MAPKs)/Nuclear Factor-κB (NF-κB) Pathway

  • Bong Sun Kim;Ra-Yeong Choi;Haeyong Kweon;Joon Ha Lee;In-Woo Kim;Minchul Seo
    • 한국축산식품학회지
    • /
    • 제44권3호
    • /
    • pp.699-709
    • /
    • 2024
  • Oxya chinensis sinuosa (OC) is a well-known edible insect. Several researches on the health benefits of OC consumption have been performed to date; however, their effect on eye health remains largely unknown. This study aimed to assess the protective effects of OC extracts on the oxidative stress on the retinal pigment epithelium (RPE) cells. Oxidative damage has been identified as one of the key regulatory factors in agerelated macular degeneration. H2O2-induced reactive oxygen species (ROS) production, a well-known oxidative stress factor, can cause cell death in retinal pigment epithelia cells. In this study, we found that three OC extracts effectively prevented H2O2-induced ROS production and subsequent death of ARPE-19 cells in a dose-dependent manner. In addition, the OC extracts inhibited the phosphorylation of mitogen-activated protein kinases including p38, JNK, and ERK. The OC extracts restored IκBα degradation induced by H2O2, indicating that OC extracts suppressed the activation of nuclear factorκB. Furthermore, the three OC extracts were shown to have antioxidant effects by upregulating the intracellular expression of key antioxidant proteins such as SOD, NQO, and HO-1. Here we demonstrated the antioxidant and anti-apoptotic effects of the OC extracts on ARPE-19, indicating their potential role in improving eye health. These results suggest that three OC extracts plays a critical role in oxidative stress-induced cell death protects in ARPE-19 cells.