• Title/Summary/Keyword: Nuclear applications

Search Result 651, Processing Time 0.025 seconds

NEW FRONTIERS IN THERMAL PLASMAS FROM SPACE TO NANOMATERIALS

  • Boulos, Maher I.
    • Nuclear Engineering and Technology
    • /
    • v.44 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • Thermal plasma technology has been at the center of major developments over the past century. It has found numerous applications ranging from aerospace materials testing to nanopowder synthesis and processing. In the present review highlights of principal breakthroughs in this field are presented with emphasis on an analysis of the basic phenomena involved, and the potential of the technology for industrial scale applications.

Generation and Benchmarking of a 69-group Cross Section Library for Thermal Reactor Applications (열중성자로 핵계산을 위한 69군 단면적 라이브러리 생산 및 검증)

  • Kim, Jung-Do;Lee, Jong-Tai;Gil, Choong-Sup;Kim, Hark-Rho
    • Nuclear Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.245-258
    • /
    • 1989
  • A 69-group cross section library consisting of more than 130 materials was generated for thermal reactor applications using the NJOY nuclear data processing system and the recent version of evaluated nuclear data files available from IAEA Nuclear Data Section. The multigroup library was validated through the analysis of various criticality experiments and depletion results of PWR. When used with the WIMS-KAERI code, the average $K_{eff}$ obtained for 47 uranium-oxide and 41 uranium metal fueled critical configurations is 0.9997 with a standard deviation of 0.69 percent. The calculated burnup dependent isotopic inventories of uranium and plutonium generally show good agreement with measured values obtained from depleted PWR pins.s.

  • PDF

Understanding radiation effects in SRAM-based field programmable gate arrays for implementing instrumentation and control systems of nuclear power plants

  • Nidhin, T.S.;Bhattacharyya, Anindya;Behera, R.P.;Jayanthi, T.;Velusamy, K.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1589-1599
    • /
    • 2017
  • Field programmable gate arrays (FPGAs) are getting more attention in safety-related and safety-critical application development of nuclear power plant instrumentation and control systems. The high logic density and advancements in architectural features make static random access memory (SRAM)-based FPGAs suitable for complex design implementations. Devices deployed in the nuclear environment face radiation particle strike that causes transient and permanent failures. The major reasons for failures are total ionization dose effects, displacement damage dose effects, and single event effects. Different from the case of space applications, soft errors are the major concern in terrestrial applications. In this article, a review of radiation effects on FPGAs is presented, especially soft errors in SRAM-based FPGAs. Single event upset (SEU) shows a high probability of error in the dependable application development in FPGAs. This survey covers the main sources of radiation and its effects on FPGAs, with emphasis on SEUs as well as on the measurement of radiation upset sensitivity and irradiation experimental results at various facilities. This article also presents a comparison between the major SEU mitigation techniques in the configuration memory and user logics of SRAM-based FPGAs.

HIGH POWER, HIGH BRIGHTNESS PROTON ACCELERATORS

  • Lee, Yong-Yung
    • Nuclear Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.433-446
    • /
    • 2005
  • The development of accelerator science and technology has been accommodating ever increasing demand from scientific community of the beam energy and intensity of proton beams. The use of high-powered proton beams has extended from the traditional application of nuclear and high-energy physics to other applications, including spallation neutron source replacing nuclear reactor, nuclear actinide transmutation, energy amplification reactors. This article attempts to review development of proton accelerator, both linear and circular, and issues related to the proton beam energy, intensity as well as its output power. For related accelerator physics and technical review, one should refer to the recent article in the Reviews of Modem Physics [1]

Integral nuclear data validation using experimental spent nuclear fuel compositions

  • Gauld, Ian C.;Williams, Mark L.;Michel-Sendis, Franco;Martinez, Jesus S.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1226-1233
    • /
    • 2017
  • Measurements of the isotopic contents of spent nuclear fuel provide experimental data that are a prerequisite for validating computer codes and nuclear data for many spent fuel applications. Under the auspices of the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency (NEA) and guidance of the Expert Group on Assay Data of Spent Nuclear Fuel of the NEA Working Party on Nuclear Criticality Safety, a new database of expanded spent fuel isotopic compositions has been compiled. The database, Spent Fuel Compositions (SFCOMPO) 2.0, includes measured data for more than 750 fuel samples acquired from 44 different reactors and representing eight different reactor technologies. Measurements for more than 90 isotopes are included. This new database provides data essential for establishing the reliability of code systems for inventory predictions, but it also has broader potential application to nuclear data evaluation. The database, together with adjoint based sensitivity and uncertainty tools for transmutation systems developed to quantify the importance of nuclear data on nuclide concentrations, are described.

Applications of online simulation supporting PWR operations

  • Wang, Chunbing;Duan, Qizhi;Zhang, Chao;Fan, Yipeng
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.842-850
    • /
    • 2021
  • Real Time Simulation (RTS) has long been used in the nuclear power industry for operator training and engineering purposes. And, Online Simulation (OLS) is based on RTS and with connection to the plant information system to acquire the measurement data in real time for calibrating the simulation models and following plant operation, for the purposes of analyzing plant events and providing indicative signs of malfunctioning. An OLS system has been developed to support PWR operations for CPR1000 plants. The OLS system provides graphical user interface (GUI) for operators to monitor critical plant operations for preventing faulty operation or analyzing plant events. Functionalities of the OLS system are depicted through the maneuvering of the GUI for various OLS functional modules in the system.

Current Status and Future Prospective of Advanced Radiation Resistant Oxide Dispersion Strengthened Steel (ARROS) Development for Nuclear Reactor System Applications

  • Kim, Tae Kyu;Noh, Sanghoon;Kang, Suk Hoon;Park, Jin Ju;Jin, Hyun Ju;Lee, Min Ku;Jang, Jinsugn;Rhee, Chang Kyu
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.572-594
    • /
    • 2016
  • As one of the Gen-IV nuclear energy systems, a sodium-cooled fast reactor (SFR) is being developed at the Korea Atomic Energy Research Institute. As a long-term national research project, advanced radiation resistant oxide dispersion strengthened steel (ARROS) is being developed as an in-core fuel cladding tube material for a SFR in the future. In this paper, the current status of ARROS development is reviewed and its future prospective is discussed.

Development of Induction Brazing System for Sealing Instrumentation Feedthrough Part of Nuclear Fuel Test Rig (핵연료조사리그 계장선 통과부위의 밀봉을 위한 유도 브레이징 시스템 개발)

  • Hong, Jintae;Kim, Ka-Hye;Heo, Sung-Ho;Ahn, Sung-Ho;Joung, Chang-Young;Son, Kwang-Jae;Jung, Yang-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1573-1579
    • /
    • 2013
  • To test the performance of nuclear fuels, coolant needs to be circulated through the test rig installed in the test loop. Because the pressure and temperature of the coolant is 15.5 MPa and $300^{\circ}C$ respectively, coolant sealing is one of the most important processes in fabricating a nuclear fuel test rig. In particular, 15 instrumentation cables installed in a test rig pass through the pressure boundary, and brazing is generally applied as a sealing method. In this study, an induction brazing system has been developed using a high frequency induction heater including a vacuum chamber. For application in the nuclear field, BNi2 should be used as a paste, and optimal process variables for Ni brazing have been found by several case studies. The performance and soundness of the brazed components has been verified by a tensile test, cross section test, and sealing performance test.