Browse > Article
http://dx.doi.org/10.1016/j.net.2015.12.005

Current Status and Future Prospective of Advanced Radiation Resistant Oxide Dispersion Strengthened Steel (ARROS) Development for Nuclear Reactor System Applications  

Kim, Tae Kyu (Nuclear Materials Development Division, Korea Atomic Energy Research Institute)
Noh, Sanghoon (Nuclear Materials Development Division, Korea Atomic Energy Research Institute)
Kang, Suk Hoon (Nuclear Materials Development Division, Korea Atomic Energy Research Institute)
Park, Jin Ju (Nuclear Materials Development Division, Korea Atomic Energy Research Institute)
Jin, Hyun Ju (Nuclear Materials Development Division, Korea Atomic Energy Research Institute)
Lee, Min Ku (Nuclear Materials Development Division, Korea Atomic Energy Research Institute)
Jang, Jinsugn (Nuclear Materials Development Division, Korea Atomic Energy Research Institute)
Rhee, Chang Kyu (Nuclear Materials Development Division, Korea Atomic Energy Research Institute)
Publication Information
Nuclear Engineering and Technology / v.48, no.2, 2016 , pp. 572-594 More about this Journal
Abstract
As one of the Gen-IV nuclear energy systems, a sodium-cooled fast reactor (SFR) is being developed at the Korea Atomic Energy Research Institute. As a long-term national research project, advanced radiation resistant oxide dispersion strengthened steel (ARROS) is being developed as an in-core fuel cladding tube material for a SFR in the future. In this paper, the current status of ARROS development is reviewed and its future prospective is discussed.
Keywords
ARROS; Fuel Cladding Tube; ODS; SFR;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 S.H. Kang, J. Jang, Y.H. Jeong, T.K. Kim, J.S. Lee, Y.S. Choi, K.H. Oh, Microstructure evolution of beryllium during proton irradiation, J. Korean Phys. Soc. 63 (2013) 1414.   DOI
2 S.H. Kang, Y.B. Chun, S. Noh, J. Jang, Y.H. Jeong, T.K. Kim, Radiation damage of F/M and ODS alloys after Fe3+-ion irradiation at $300^{\circ}C$, J. Korean Phys. Soc. 66 (2015) 505-508.   DOI
3 T.K. Kim, S.H. Kim, Study on the cold working process for FM steel cladding tubes, J. Nucl. Mater. 411 (2011) 208-212.   DOI
4 Y.H. Jeong, W.J. Kim, D.J. Kim, J. Jang, S.H. Kang, Y.B. Chun, T.K. Kim, Development of advanced structural materials for future nuclear systems in Korea, Procedia Eng. 86 (2014) 1-7.   DOI
5 Y.H. Jeong, S.H. Kim, W.J. Kim, J.Y. Park, J. Kwon, J. Jang, T.K. Kim, High temperature alloy development for future nuclear systems in Korea, Procedia Eng. 55 (2013) 253-258.   DOI
6 T.K. Kim, C.H. Han, S.H. Kang, S. Noh, J. Jang, Effects of oxygen concentration on the size distribution of oxide particles in ODS steel, Curr. Nanosci. 10 (2014) 94-96.   DOI
7 S. Noh, J.E. Choi, B.K. Choi, S.H. Kang, T.K. Kim, Effects of Cr, Mo, Al, Zr, $Y_2O_3$ on the microstructures and tensile properties of ODS ferritic/martensitic alloys, Korean J. Met. Mater. 52 (2014) 705-711.   DOI
8 H.J. Jin, S.H. Kang, T.K. Kim, Microstructure evolution of 15Cr ODS steel by a simple torsion test, J. Korean Powder Metall. Inst. 21 (2014) 271-276.   DOI
9 S. Noh, B.K. Choi, S.H. Kang, T.K. Kim, Influence of mechanical alloying atmospheres on the microstructures and mechanical properties of 15Cr ODS steels, Nucl. Eng. Technol. 46 (2014) 857-862.   DOI
10 T.K. Kim, C.S. Bae, D.H. Kim, J. Jang, S.H. Kim, C.B. Lee, D. Hahn, Microstructural observation and tensile isotropy of an austenitic ODS steel, Nucl. Eng. Technol. 40 (2008) 305-310.   DOI
11 Y.S. Han, X. Mao, J. Jang, T.K. Kim, Characterization of nanosized oxides in Fe-12Cr oxide-dispersion-strengthened ferritic steel using small-angle neutron scattering, Appl. Phys. A 119 (2015) 249-252.   DOI
12 X. Mao, K.H. Oh, S.H. Kang, T.K. Kim, J. Jang, On the coherency of Y2Ti2O7 particles with austenitic matrix of oxide dispersion strengthened steel, Acta Mater. 89 (2015) 141-152.   DOI
13 X. Mao, T.K. Kim, S.S. Kim, Y.S. Han, K.H. Oh, J. Jang, Crystallographic relationship of $YTaO_4$ particles with matrix in Ta-containing 12Cr ODS steel, J. Nucl. Mater. 461 (2015) 329-335.   DOI
14 T.K. Kim, J.H. Baek, C.H. Han, S.H. Kim, C.B. Lee, Effects of the fabrication process parameters on the precipitates and mechanical properties of a 9Cr-2W-V-Nb steel, J. Nucl. Mater. 389 (2009) 359-364.   DOI
15 T.S. Byun, J.H. Yoon, D.T. Hoelzer, Y.B. Lee, S.H. Kang, S.A. Maloy, Process development for 9Cr nanostructured ferritic alloy (NFA) with high fracture toughness, J. Nucl. Mater. 449 (2014) 290-299.   DOI
16 L. Toualbi, C. Cayron, P. Olier, J. Malaplate, M. Praud, M.-H. Mathon, D. Bossu, E. Rouesne, A. Montani, R. Loge, Y. de Carlan, Assessment of a new fabrication route for Fe-9Cr-1W ODS cladding tubes, J. Nucl. Mater. 428 (2012) 47-53.   DOI
17 S. Ukai, S. Mizuta, M. Fujiwara, T. Okuda, T. Kobayashi, Development of 9Cr-ODS martensitic steel claddings for fuel pins by means of ferrite to austenite phase transformation, J. Nucl. Sci. Technol. 39 (2002) 778-788.
18 T.R. Allen, C.L. Trybus, J.I. Cole, The effects of low dose rate irradiation and thermal aging on reactor structural alloys,, J. Nucl. Mater. 270 (1999) 290-300.   DOI
19 S. Noh, J.E. Choi, B.-K. Choi, S.H. Kang, T.K. Kim, Effects of Cr, Mo, Al, Zr, $Y_2O_3$ on the microstructures and tensile properties of ODS ferritic/martensitic alloys, Korean J. Met. Mater. 52 (2014) 705-712.   DOI
20 S. Ukai, T. Nishida, H. Okada, T. Okuda, M. Fujuwara, K. Asabe, Development of oxide dispersion strengthened ferritic steels for FBR core application (I), J. Nucl. Sci. Technol. 34 (1997) 256-263.   DOI
21 G.J. Butterworth, O.N. Jarvis, Comparison of transmutation and activation effects in five ferritic alloys and aisi 316 stainless steel in a fusion neutron spectrum, J. Nucl. Mater. 123 (1984) 982-988.   DOI
22 D. Dulieu, K.W. Tupholme, G.J. Butterworth, Development of low-activation martensitic stainless steels, J. Nucl. Mater. 141-143 (1986) 1097-1101.   DOI
23 T. Noda, F. Abe, H. Araki, M. Okada, Development of low activation ferritic steels, J. Nucl. Mater. 141-143 (1986) 1102-1106.   DOI
24 Y. Kimura, S. Takaki, S. Suejima, R. Uemori, H. Tamehiro, Ultra grain refining and decomposition of oxide during super-heavy deformation in oxide dispersion ferritic stainless steel powder, ISIJ Int. 39 (1999) 176-182.   DOI
25 U. Martin, M. Heilmaier, Novel dispersion strengthened metals by mechanical alloying, Adv. Eng. Mater. 6 (2004) 515-520.   DOI
26 S. Ukai, S. Mizuta, T. Yoshitake, T. Okuda, M. Fujiwara, S. Hagi, T. Kobayashi, Tube manufacturing and characterization of oxide dispersion strengthened ferritic steels, J. Nucl. Mater. 283-287 (2000) 702-706.   DOI
27 H. Sakasegawa, L. Chaffron, F. Legendre, L. Boulanger, T. Cozzika, M. Brocq, Y. De Carlan, Correlation between chemical composition and size of very small oxide particles in the MA957 ODS ferritic alloy, J. Nucl. Mater. 384 (2009) 115-118.   DOI
28 S. Ukai, T. Narita, A. Alamo, P. Parmentier, Tube manufacturing trials by different routes in 9CrW-ODS martensitic steels, J. Nucl. Mater. 329-333 (2004) 356-361.   DOI
29 D.Y. Ying, D.L. Zhang, Processing of Cu-$Al_2O_3$ metal matrix nanocomposite materials by using high energy ball milling, Mater. Sci. Eng. A 286 (2000) 152-156.   DOI
30 T. Mousavi, F. Karimzadeh, M.H. Abbasi, M.H. Enayati, Investigation of Ni nanocrystallization and the effect of $Al_2O_3$ addition by high-energy ball milling, J. Mater. Proc. Tech. 204 (2008) 125-129.   DOI
31 A.N. Streletskii, T.H. Courtney, Kinetic, chemical and mechanical factors affecting mechanical alloying of Ni-bcc transition metal mixtures, Mater. Sci. Eng. A A282 (2000) 213-222.
32 Z. Oksiuta, P. Olier, Y. de Carlan, N. Baluc, Development and characterisation of a new ODS ferritic steel for fusion reactor applications, J. Nucl. Mater. 393 (2009) 114-119.   DOI
33 J. Alinger, G.R. Odette, D.T. Hoelzer, The development and stability of Y-Ti-O nanoclusters in mechanically alloyed Fe-Cr based ferritic alloys, J. Nucl. Mater. 329-333 (2004) 382-386.   DOI
34 S. Ohtsuka, S. Ukai, M. Fujiwara, T. Kaito, T. Narita, Nanomesoscopic structural control in 9Cr ODS ferritic/martensitic steels, J. Nucl. Mater. 351 (2006) 241-246.   DOI
35 M. Inoue, T. Kaito, S. Ohtsuka, Research and development of oxide dispersion strengthened ferritic steels for sodium cooled fast breeder reactor fuels, in: Materials for Generation IV Nuclear Reactors Vol. 6, NATO Advanced Study Institute, Cargese, Corsica, France, 2007.
36 S. Ukai, T. Kaito, M. Seki, A.A. Mayorshin, O.V. Shishalov, Oxide dispersion strengthened (ODS) fuel pins fabrication for BOR-60 irradiation test, J. Nucl. Sci. Technol. 42 (2005) 109-122.   DOI
37 S. Kim, S. Ohtsuka, T. Kaito, S. Yamashita, M. Inoue, T. Asayama, T. Shobu, Formation of nano-size oxide particles and d-ferrite at elevated temperature in 9Cr-ODS steel, J. Nucl. Mater. 417 (2011) 209-212.   DOI
38 S. Ukai, Microstructure and high-temperature strength of 9Cr ODS ferritic steel, Metal, Ceramic and Polymeric Composites for Various Uses, Dr. John Cuppoletti (Ed.), 2011, pp. 283-302.
39 U.F. Kocks, C.N. Tome, H.-R. Wenk, Texture and Anisotropy, Cambridge University Press, Cambridge, 1998, p. 201.
40 P. Norajitra, L. Buhler, A. Buenaventura, E. Diegele, U. Fischer, S. Gordeev, E. Hutter, R. Kruessmann, S. Malang, D. Maisonnier, A. Ordena, G. Reimann, J. Reimann, G. Vieider, D. Ward, F. Wasastjerna, Conceptual Design of the EU Dualcoolant Blanket (Model C)", Proceeding Symposium on Fusion Engineering, 2003.
41 P. Norajitra, R. Giniyatulin, T. Hirai, W. Krauss, V. Kuznetsov, I. Mazul, I. Ovchinnikov, J. Reiser, G. Ritz, H.J. Ritzhaupt-Kleissl, V. Widak, Current status of He-cooled divertor development for DEMO, Fusion Eng. Des. 84 (2009) 1429-1433.   DOI
42 R. Lindau, A. Moslang, M. Rieth, M. Klimiankou, E. Materna-Morris, A. Alamo, A.-A.F. Tavassoli, C. Cayron, A.-M. Lancha, P. Fernandez, N. Baluc, R. Schaublin, E. Diegele, G. Filacchioni, J.W. Rensman, B.v.d. Schaaf, E. Lucon, W. Dietz, Present development status of EUROFER and ODS-EUROFER for application in blanket concepts, Fusion Eng. Des. 75-79 (2005) 989-996.   DOI
43 M. Seki, K. Hirako, S. Kono, Y. Kihara, T. Kaito, S. Ukai, Pressurized resistance welding technology development in 9Cr-ODS martensitic steels, J. Nucl. Mater. 329-333 (2004) 1534-1538.   DOI
44 S. Noh, R. Kasada, A. Kimura, S.H.C. Park, S. Hirano, Microstructure and mechanical properties of friction stir processed ODS ferritic steels, J. Nucl. Mater. 417 (2011) 245-248.   DOI
45 M. Seki, H. Ishibasi, Y. Kihara, T. Tsukada, K. Hirako, Development of Welding Process for Oxide Dispersion Strengthened (ODS) Ferritic Steel, Technical report, JNC TN8410 2005-009, 2005, p. 19.
46 S. Noh, R. Kasada, N. Oono, N. Iwata, A. Kimura, Evaluation of microstructure and mechanical properties of liquid phase diffusion bonded ODS steels, Fusion Eng. Des. 85 (2010) 1033-1037.   DOI
47 T. Uwaba, S. Ukai, T. Nakai, M. Fujiwara, Properties of friction welds between 9Cr-ODS martensitic and ferritic-martensitic steels, J. Nucl. Mater. 367-370 (2007) 1213-1217.   DOI
48 D.T. Hoelzer, K.A. Unocic, M.A. Sokolov, Z. Feng, Joining of 14YWT and F82H by friction stir welding, J. Nucl. Mater. 442 (2013) S529-S534.   DOI
49 W. Han, D. Chen, Y. Ha, A. Kimura, H. Serizawa, H. Fujii, Y. Morisada, Modifications of grain-boundary structure by friction stir welding in the joint of nano-structured oxide dispersion strengthened ferritic steel and reduced activation martensitic steel, Scripta Mater. 105 (2015) 2-5.   DOI
50 S. Noh, A. Kimura, T.K. Kim, Diffusion bonding of 9Cr ODS ferritic/martensitic steel with a phase transformation, Fusion Eng. Des. 89 (2014) 1746-1750.   DOI
51 H. Okuda, S. Ukai, M. Inoue, Effect of grain morphology and texture on high temperature deformation in oxide dispersion strengthened ferritic steels, J. Nucl. Sci. Technol. 33 (1996) 936-943.   DOI
52 R.N. Raoelison, N. Buiron, M. Rachik, D. Haye, G. Franz, M. Habak, Study of the elaboration of a practical weldability window in magnetic pulse welding, J. Mater. Process. Technol. 213 (2013) 1348-1354.   DOI
53 J.G. Lee, J.J. Park, M.K. Lee, C.K. Rhee, T.K. Kim, A. Sprin, V. Krutikov, S. Paranin, End closure joining of ferritic-martensitic and oxide-dispersion strengthened steel cladding tubes by magnetic pulse welding, Metall. Mater. Trans. A 46A (2015) 3132-3139.
54 J.Y. Shim, I.S. Kim, K.J. Lee, B.Y. Kang, Experimental and numerical analysis on aluminum/steel pipe using magnetic pulse welding, Met. Mater. Int. 17 (2011) 957-961.   DOI
55 Y. Zhang, S.S. Babu, C. Prothe, M. Blakely, J. Kwasegroch, M. LaHa, G.S. Daehn, Application of high velocity impact welding at varied different length scales, J. Mater. Process. Technol. 211 (2011) 944-952.   DOI
56 V. Krutikov, S. Paranin, V. Ivanov, A. Spirin, D. Koleukh, J.G. Lee, M.K. Lee, C.K. Rhee, Magnetic Pulsed Welding of the Tube-plug Pair of STS410 Steel, 6th International Conference on High Speed Forming, Daejeon, Korea, 2014, pp. 207-214.
57 K.J. Lee, S. Kumai, T. Arai, T. Aizawa, Interfacial microstructure and strength of steel/aluminum alloy lap joint fabricated by magnetic pressure seam welding, Mater. Sci. Eng. A A471 (2007) 95-101.
58 M. Watanabe, S. Kumai, Interfacial morphology of magnetic pulse welded aluminum/aluminum and copper/copper lap joints, Mater. Trans. 50 (2009) 286-292.   DOI
59 A.P. Manogaran, P. Manoharan, D. Priem, S. Marya, G. Racineux, Magnetic pulse spot welding of bimetals, J. Mater. Process. Technol. 214 (2014) 1236-1244.   DOI
60 Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, The process of grain refinement in equal-channel angular pressing,, Acta Mater. 46 (1998) 3317-3331.   DOI
61 Y. Zhang, S.S. Babu, G.S. Daehn, Interfacial ultrafine-grained structures on aluminum alloy 6061 joint and copper alloy 110 joint fabricated by magnetic pulse welding, J. Mater. Sci. 45 (2010) 4645-4651.   DOI