DOI QR코드

DOI QR Code

Current Status and Future Prospective of Advanced Radiation Resistant Oxide Dispersion Strengthened Steel (ARROS) Development for Nuclear Reactor System Applications

  • Kim, Tae Kyu (Nuclear Materials Development Division, Korea Atomic Energy Research Institute) ;
  • Noh, Sanghoon (Nuclear Materials Development Division, Korea Atomic Energy Research Institute) ;
  • Kang, Suk Hoon (Nuclear Materials Development Division, Korea Atomic Energy Research Institute) ;
  • Park, Jin Ju (Nuclear Materials Development Division, Korea Atomic Energy Research Institute) ;
  • Jin, Hyun Ju (Nuclear Materials Development Division, Korea Atomic Energy Research Institute) ;
  • Lee, Min Ku (Nuclear Materials Development Division, Korea Atomic Energy Research Institute) ;
  • Jang, Jinsugn (Nuclear Materials Development Division, Korea Atomic Energy Research Institute) ;
  • Rhee, Chang Kyu (Nuclear Materials Development Division, Korea Atomic Energy Research Institute)
  • Received : 2015.08.03
  • Accepted : 2015.12.12
  • Published : 2016.04.25

Abstract

As one of the Gen-IV nuclear energy systems, a sodium-cooled fast reactor (SFR) is being developed at the Korea Atomic Energy Research Institute. As a long-term national research project, advanced radiation resistant oxide dispersion strengthened steel (ARROS) is being developed as an in-core fuel cladding tube material for a SFR in the future. In this paper, the current status of ARROS development is reviewed and its future prospective is discussed.

Keywords

References

  1. T.K. Kim, S.H. Kim, Study on the cold working process for FM steel cladding tubes, J. Nucl. Mater. 411 (2011) 208-212. https://doi.org/10.1016/j.jnucmat.2011.02.017
  2. Y.H. Jeong, W.J. Kim, D.J. Kim, J. Jang, S.H. Kang, Y.B. Chun, T.K. Kim, Development of advanced structural materials for future nuclear systems in Korea, Procedia Eng. 86 (2014) 1-7. https://doi.org/10.1016/j.proeng.2014.11.004
  3. Y.H. Jeong, S.H. Kim, W.J. Kim, J.Y. Park, J. Kwon, J. Jang, T.K. Kim, High temperature alloy development for future nuclear systems in Korea, Procedia Eng. 55 (2013) 253-258. https://doi.org/10.1016/j.proeng.2013.03.251
  4. T.K. Kim, C.H. Han, S.H. Kang, S. Noh, J. Jang, Effects of oxygen concentration on the size distribution of oxide particles in ODS steel, Curr. Nanosci. 10 (2014) 94-96. https://doi.org/10.2174/1573413709666131108230647
  5. S. Noh, J.E. Choi, B.K. Choi, S.H. Kang, T.K. Kim, Effects of Cr, Mo, Al, Zr, $Y_2O_3$ on the microstructures and tensile properties of ODS ferritic/martensitic alloys, Korean J. Met. Mater. 52 (2014) 705-711. https://doi.org/10.3365/KJMM.2014.52.9.705
  6. H.J. Jin, S.H. Kang, T.K. Kim, Microstructure evolution of 15Cr ODS steel by a simple torsion test, J. Korean Powder Metall. Inst. 21 (2014) 271-276. https://doi.org/10.4150/KPMI.2014.21.4.271
  7. S. Noh, B.K. Choi, S.H. Kang, T.K. Kim, Influence of mechanical alloying atmospheres on the microstructures and mechanical properties of 15Cr ODS steels, Nucl. Eng. Technol. 46 (2014) 857-862. https://doi.org/10.5516/NET.07.2013.096
  8. T.K. Kim, C.S. Bae, D.H. Kim, J. Jang, S.H. Kim, C.B. Lee, D. Hahn, Microstructural observation and tensile isotropy of an austenitic ODS steel, Nucl. Eng. Technol. 40 (2008) 305-310. https://doi.org/10.5516/NET.2008.40.4.305
  9. Y.S. Han, X. Mao, J. Jang, T.K. Kim, Characterization of nanosized oxides in Fe-12Cr oxide-dispersion-strengthened ferritic steel using small-angle neutron scattering, Appl. Phys. A 119 (2015) 249-252. https://doi.org/10.1007/s00339-014-8956-4
  10. X. Mao, K.H. Oh, S.H. Kang, T.K. Kim, J. Jang, On the coherency of Y2Ti2O7 particles with austenitic matrix of oxide dispersion strengthened steel, Acta Mater. 89 (2015) 141-152. https://doi.org/10.1016/j.actamat.2015.01.060
  11. X. Mao, T.K. Kim, S.S. Kim, Y.S. Han, K.H. Oh, J. Jang, Crystallographic relationship of $YTaO_4$ particles with matrix in Ta-containing 12Cr ODS steel, J. Nucl. Mater. 461 (2015) 329-335. https://doi.org/10.1016/j.jnucmat.2015.03.018
  12. T.K. Kim, J.H. Baek, C.H. Han, S.H. Kim, C.B. Lee, Effects of the fabrication process parameters on the precipitates and mechanical properties of a 9Cr-2W-V-Nb steel, J. Nucl. Mater. 389 (2009) 359-364. https://doi.org/10.1016/j.jnucmat.2009.01.302
  13. T.S. Byun, J.H. Yoon, D.T. Hoelzer, Y.B. Lee, S.H. Kang, S.A. Maloy, Process development for 9Cr nanostructured ferritic alloy (NFA) with high fracture toughness, J. Nucl. Mater. 449 (2014) 290-299. https://doi.org/10.1016/j.jnucmat.2013.10.007
  14. L. Toualbi, C. Cayron, P. Olier, J. Malaplate, M. Praud, M.-H. Mathon, D. Bossu, E. Rouesne, A. Montani, R. Loge, Y. de Carlan, Assessment of a new fabrication route for Fe-9Cr-1W ODS cladding tubes, J. Nucl. Mater. 428 (2012) 47-53. https://doi.org/10.1016/j.jnucmat.2011.12.013
  15. S. Ukai, S. Mizuta, M. Fujiwara, T. Okuda, T. Kobayashi, Development of 9Cr-ODS martensitic steel claddings for fuel pins by means of ferrite to austenite phase transformation, J. Nucl. Sci. Technol. 39 (2002) 778-788.
  16. S. Noh, J.E. Choi, B.-K. Choi, S.H. Kang, T.K. Kim, Effects of Cr, Mo, Al, Zr, $Y_2O_3$ on the microstructures and tensile properties of ODS ferritic/martensitic alloys, Korean J. Met. Mater. 52 (2014) 705-712. https://doi.org/10.3365/KJMM.2014.52.9.705
  17. S. Ukai, T. Nishida, H. Okada, T. Okuda, M. Fujuwara, K. Asabe, Development of oxide dispersion strengthened ferritic steels for FBR core application (I), J. Nucl. Sci. Technol. 34 (1997) 256-263. https://doi.org/10.1080/18811248.1997.9733658
  18. T.R. Allen, C.L. Trybus, J.I. Cole, The effects of low dose rate irradiation and thermal aging on reactor structural alloys,, J. Nucl. Mater. 270 (1999) 290-300. https://doi.org/10.1016/S0022-3115(99)00010-0
  19. G.J. Butterworth, O.N. Jarvis, Comparison of transmutation and activation effects in five ferritic alloys and aisi 316 stainless steel in a fusion neutron spectrum, J. Nucl. Mater. 123 (1984) 982-988. https://doi.org/10.1016/0022-3115(84)90205-8
  20. D. Dulieu, K.W. Tupholme, G.J. Butterworth, Development of low-activation martensitic stainless steels, J. Nucl. Mater. 141-143 (1986) 1097-1101. https://doi.org/10.1016/0022-3115(86)90148-0
  21. T. Noda, F. Abe, H. Araki, M. Okada, Development of low activation ferritic steels, J. Nucl. Mater. 141-143 (1986) 1102-1106. https://doi.org/10.1016/0022-3115(86)90149-2
  22. Y. Kimura, S. Takaki, S. Suejima, R. Uemori, H. Tamehiro, Ultra grain refining and decomposition of oxide during super-heavy deformation in oxide dispersion ferritic stainless steel powder, ISIJ Int. 39 (1999) 176-182. https://doi.org/10.2355/isijinternational.39.176
  23. U. Martin, M. Heilmaier, Novel dispersion strengthened metals by mechanical alloying, Adv. Eng. Mater. 6 (2004) 515-520. https://doi.org/10.1002/adem.200400410
  24. S. Ukai, S. Mizuta, T. Yoshitake, T. Okuda, M. Fujiwara, S. Hagi, T. Kobayashi, Tube manufacturing and characterization of oxide dispersion strengthened ferritic steels, J. Nucl. Mater. 283-287 (2000) 702-706. https://doi.org/10.1016/S0022-3115(00)00114-8
  25. S. Ukai, T. Narita, A. Alamo, P. Parmentier, Tube manufacturing trials by different routes in 9CrW-ODS martensitic steels, J. Nucl. Mater. 329-333 (2004) 356-361. https://doi.org/10.1016/j.jnucmat.2004.04.082
  26. D.Y. Ying, D.L. Zhang, Processing of Cu-$Al_2O_3$ metal matrix nanocomposite materials by using high energy ball milling, Mater. Sci. Eng. A 286 (2000) 152-156. https://doi.org/10.1016/S0921-5093(00)00627-4
  27. T. Mousavi, F. Karimzadeh, M.H. Abbasi, M.H. Enayati, Investigation of Ni nanocrystallization and the effect of $Al_2O_3$ addition by high-energy ball milling, J. Mater. Proc. Tech. 204 (2008) 125-129. https://doi.org/10.1016/j.jmatprotec.2007.10.077
  28. H. Sakasegawa, L. Chaffron, F. Legendre, L. Boulanger, T. Cozzika, M. Brocq, Y. De Carlan, Correlation between chemical composition and size of very small oxide particles in the MA957 ODS ferritic alloy, J. Nucl. Mater. 384 (2009) 115-118. https://doi.org/10.1016/j.jnucmat.2008.11.001
  29. A.N. Streletskii, T.H. Courtney, Kinetic, chemical and mechanical factors affecting mechanical alloying of Ni-bcc transition metal mixtures, Mater. Sci. Eng. A A282 (2000) 213-222.
  30. Z. Oksiuta, P. Olier, Y. de Carlan, N. Baluc, Development and characterisation of a new ODS ferritic steel for fusion reactor applications, J. Nucl. Mater. 393 (2009) 114-119. https://doi.org/10.1016/j.jnucmat.2009.05.013
  31. J. Alinger, G.R. Odette, D.T. Hoelzer, The development and stability of Y-Ti-O nanoclusters in mechanically alloyed Fe-Cr based ferritic alloys, J. Nucl. Mater. 329-333 (2004) 382-386. https://doi.org/10.1016/j.jnucmat.2004.04.042
  32. S. Ohtsuka, S. Ukai, M. Fujiwara, T. Kaito, T. Narita, Nanomesoscopic structural control in 9Cr ODS ferritic/martensitic steels, J. Nucl. Mater. 351 (2006) 241-246. https://doi.org/10.1016/j.jnucmat.2006.02.006
  33. M. Inoue, T. Kaito, S. Ohtsuka, Research and development of oxide dispersion strengthened ferritic steels for sodium cooled fast breeder reactor fuels, in: Materials for Generation IV Nuclear Reactors Vol. 6, NATO Advanced Study Institute, Cargese, Corsica, France, 2007.
  34. S. Kim, S. Ohtsuka, T. Kaito, S. Yamashita, M. Inoue, T. Asayama, T. Shobu, Formation of nano-size oxide particles and d-ferrite at elevated temperature in 9Cr-ODS steel, J. Nucl. Mater. 417 (2011) 209-212. https://doi.org/10.1016/j.jnucmat.2011.01.063
  35. S. Ukai, Microstructure and high-temperature strength of 9Cr ODS ferritic steel, Metal, Ceramic and Polymeric Composites for Various Uses, Dr. John Cuppoletti (Ed.), 2011, pp. 283-302.
  36. U.F. Kocks, C.N. Tome, H.-R. Wenk, Texture and Anisotropy, Cambridge University Press, Cambridge, 1998, p. 201.
  37. S. Ukai, T. Kaito, M. Seki, A.A. Mayorshin, O.V. Shishalov, Oxide dispersion strengthened (ODS) fuel pins fabrication for BOR-60 irradiation test, J. Nucl. Sci. Technol. 42 (2005) 109-122. https://doi.org/10.1080/18811248.2005.9726370
  38. P. Norajitra, L. Buhler, A. Buenaventura, E. Diegele, U. Fischer, S. Gordeev, E. Hutter, R. Kruessmann, S. Malang, D. Maisonnier, A. Ordena, G. Reimann, J. Reimann, G. Vieider, D. Ward, F. Wasastjerna, Conceptual Design of the EU Dualcoolant Blanket (Model C)", Proceeding Symposium on Fusion Engineering, 2003.
  39. P. Norajitra, R. Giniyatulin, T. Hirai, W. Krauss, V. Kuznetsov, I. Mazul, I. Ovchinnikov, J. Reiser, G. Ritz, H.J. Ritzhaupt-Kleissl, V. Widak, Current status of He-cooled divertor development for DEMO, Fusion Eng. Des. 84 (2009) 1429-1433. https://doi.org/10.1016/j.fusengdes.2008.11.042
  40. R. Lindau, A. Moslang, M. Rieth, M. Klimiankou, E. Materna-Morris, A. Alamo, A.-A.F. Tavassoli, C. Cayron, A.-M. Lancha, P. Fernandez, N. Baluc, R. Schaublin, E. Diegele, G. Filacchioni, J.W. Rensman, B.v.d. Schaaf, E. Lucon, W. Dietz, Present development status of EUROFER and ODS-EUROFER for application in blanket concepts, Fusion Eng. Des. 75-79 (2005) 989-996. https://doi.org/10.1016/j.fusengdes.2005.06.186
  41. M. Seki, K. Hirako, S. Kono, Y. Kihara, T. Kaito, S. Ukai, Pressurized resistance welding technology development in 9Cr-ODS martensitic steels, J. Nucl. Mater. 329-333 (2004) 1534-1538. https://doi.org/10.1016/j.jnucmat.2004.04.172
  42. M. Seki, H. Ishibasi, Y. Kihara, T. Tsukada, K. Hirako, Development of Welding Process for Oxide Dispersion Strengthened (ODS) Ferritic Steel, Technical report, JNC TN8410 2005-009, 2005, p. 19.
  43. S. Noh, R. Kasada, N. Oono, N. Iwata, A. Kimura, Evaluation of microstructure and mechanical properties of liquid phase diffusion bonded ODS steels, Fusion Eng. Des. 85 (2010) 1033-1037. https://doi.org/10.1016/j.fusengdes.2010.01.001
  44. T. Uwaba, S. Ukai, T. Nakai, M. Fujiwara, Properties of friction welds between 9Cr-ODS martensitic and ferritic-martensitic steels, J. Nucl. Mater. 367-370 (2007) 1213-1217. https://doi.org/10.1016/j.jnucmat.2007.03.221
  45. S. Noh, R. Kasada, A. Kimura, S.H.C. Park, S. Hirano, Microstructure and mechanical properties of friction stir processed ODS ferritic steels, J. Nucl. Mater. 417 (2011) 245-248. https://doi.org/10.1016/j.jnucmat.2011.01.059
  46. D.T. Hoelzer, K.A. Unocic, M.A. Sokolov, Z. Feng, Joining of 14YWT and F82H by friction stir welding, J. Nucl. Mater. 442 (2013) S529-S534. https://doi.org/10.1016/j.jnucmat.2013.04.027
  47. W. Han, D. Chen, Y. Ha, A. Kimura, H. Serizawa, H. Fujii, Y. Morisada, Modifications of grain-boundary structure by friction stir welding in the joint of nano-structured oxide dispersion strengthened ferritic steel and reduced activation martensitic steel, Scripta Mater. 105 (2015) 2-5. https://doi.org/10.1016/j.scriptamat.2015.04.012
  48. S. Noh, A. Kimura, T.K. Kim, Diffusion bonding of 9Cr ODS ferritic/martensitic steel with a phase transformation, Fusion Eng. Des. 89 (2014) 1746-1750. https://doi.org/10.1016/j.fusengdes.2013.12.023
  49. H. Okuda, S. Ukai, M. Inoue, Effect of grain morphology and texture on high temperature deformation in oxide dispersion strengthened ferritic steels, J. Nucl. Sci. Technol. 33 (1996) 936-943. https://doi.org/10.1080/18811248.1996.9732035
  50. R.N. Raoelison, N. Buiron, M. Rachik, D. Haye, G. Franz, M. Habak, Study of the elaboration of a practical weldability window in magnetic pulse welding, J. Mater. Process. Technol. 213 (2013) 1348-1354. https://doi.org/10.1016/j.jmatprotec.2013.03.004
  51. J.Y. Shim, I.S. Kim, K.J. Lee, B.Y. Kang, Experimental and numerical analysis on aluminum/steel pipe using magnetic pulse welding, Met. Mater. Int. 17 (2011) 957-961. https://doi.org/10.1007/s12540-011-6014-8
  52. Y. Zhang, S.S. Babu, C. Prothe, M. Blakely, J. Kwasegroch, M. LaHa, G.S. Daehn, Application of high velocity impact welding at varied different length scales, J. Mater. Process. Technol. 211 (2011) 944-952. https://doi.org/10.1016/j.jmatprotec.2010.01.001
  53. V. Krutikov, S. Paranin, V. Ivanov, A. Spirin, D. Koleukh, J.G. Lee, M.K. Lee, C.K. Rhee, Magnetic Pulsed Welding of the Tube-plug Pair of STS410 Steel, 6th International Conference on High Speed Forming, Daejeon, Korea, 2014, pp. 207-214.
  54. J.G. Lee, J.J. Park, M.K. Lee, C.K. Rhee, T.K. Kim, A. Sprin, V. Krutikov, S. Paranin, End closure joining of ferritic-martensitic and oxide-dispersion strengthened steel cladding tubes by magnetic pulse welding, Metall. Mater. Trans. A 46A (2015) 3132-3139.
  55. K.J. Lee, S. Kumai, T. Arai, T. Aizawa, Interfacial microstructure and strength of steel/aluminum alloy lap joint fabricated by magnetic pressure seam welding, Mater. Sci. Eng. A A471 (2007) 95-101.
  56. M. Watanabe, S. Kumai, Interfacial morphology of magnetic pulse welded aluminum/aluminum and copper/copper lap joints, Mater. Trans. 50 (2009) 286-292. https://doi.org/10.2320/matertrans.L-MRA2008843
  57. A.P. Manogaran, P. Manoharan, D. Priem, S. Marya, G. Racineux, Magnetic pulse spot welding of bimetals, J. Mater. Process. Technol. 214 (2014) 1236-1244. https://doi.org/10.1016/j.jmatprotec.2014.01.007
  58. Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, The process of grain refinement in equal-channel angular pressing,, Acta Mater. 46 (1998) 3317-3331. https://doi.org/10.1016/S1359-6454(97)00494-1
  59. Y. Zhang, S.S. Babu, G.S. Daehn, Interfacial ultrafine-grained structures on aluminum alloy 6061 joint and copper alloy 110 joint fabricated by magnetic pulse welding, J. Mater. Sci. 45 (2010) 4645-4651. https://doi.org/10.1007/s10853-010-4676-0
  60. S.H. Kang, J. Jang, Y.H. Jeong, T.K. Kim, J.S. Lee, Y.S. Choi, K.H. Oh, Microstructure evolution of beryllium during proton irradiation, J. Korean Phys. Soc. 63 (2013) 1414. https://doi.org/10.3938/jkps.63.1414
  61. S.H. Kang, Y.B. Chun, S. Noh, J. Jang, Y.H. Jeong, T.K. Kim, Radiation damage of F/M and ODS alloys after Fe3+-ion irradiation at $300^{\circ}C$, J. Korean Phys. Soc. 66 (2015) 505-508. https://doi.org/10.3938/jkps.66.505

Cited by

  1. Multiscale Simulation of Yield Strength in Reduced-Activation Ferritic/Martensitic Steel vol.49, pp.3, 2017, https://doi.org/10.1016/j.net.2016.10.006
  2. Long-term thermal-aging stability of oxide-dispersion-strengthened ferritic steels at 753 K vol.25, pp.7, 2016, https://doi.org/10.1007/s42243-018-0110-7
  3. Effects of aluminum and titanium on the microstructure of ODS steels fabricated by hot pressing vol.25, pp.10, 2016, https://doi.org/10.1007/s12613-018-1667-7
  4. Simulation of impact toughness with the effect of temperature and irradiation in steels vol.51, pp.1, 2016, https://doi.org/10.1016/j.net.2018.08.016
  5. Microstructure characteristics and properties of yttrium-bearing 9Cr ferritic-martensitic steel cladding tubes vol.6, pp.9, 2016, https://doi.org/10.1088/2053-1591/ab332e
  6. Development of Yttrium Titanate/Nickel Nanocomposites with Self Crack-Healing Ability and Potential Application as Thermal Barrier Coating Material vol.61, pp.8, 2020, https://doi.org/10.2320/matertrans.mt-mn2019006
  7. Structural Evolution of Nano-sized Oxide Particles Formed in Mechanically Alloyed Fe-10Cr-5Y2O3 Powders vol.10, pp.3, 2016, https://doi.org/10.3390/met10030310
  8. Development of aluminide diffusion coatings on ODS ferritic-martensitic steel for corrosion resistance in high temperature super critical-carbon dioxide environment vol.509, pp.None, 2016, https://doi.org/10.1016/j.apsusc.2020.145387
  9. Chromium Diffusion Coating on an ODS Ferritic-Martensitic Steel and Its Oxidation Behavior in Air and Steam Environments vol.10, pp.5, 2020, https://doi.org/10.3390/coatings10050492
  10. Synthesis and Phases Characterization of Fe-Cr ODS (Oxide Dispersion Strengthened) Steel Using X-ray Diffraction Technique vol.1912, pp.1, 2016, https://doi.org/10.1088/1742-6596/1912/1/012033
  11. Research progress on preparation technology of oxide dispersion strengthened steel for nuclear energy vol.3, pp.3, 2016, https://doi.org/10.1088/2631-7990/abff1a
  12. Nitride Dispersion Strengthened Steel Development after Sintering of Nitrided Fe‐4.6 at% Al Alloy Powder vol.92, pp.11, 2021, https://doi.org/10.1002/srin.202100174