• Title/Summary/Keyword: Nuclear Power Plant Performance

Search Result 500, Processing Time 0.021 seconds

Fault Detection and Diagnosis of the Deaerator Level Control System in Nuclear Power Plants

  • Kim Kyung Youn;Lee Yoon Joon
    • Nuclear Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.73-82
    • /
    • 2004
  • The deaerator of a power plant is one of feedwater heaters in the secondary system, and it is located above the feedwater pumps. The feedwater pumps take the water from the deaerator storage tank, and the net positive suction head(NSPH) should always be ensured. To secure the sufficient NPSH, the deaerator tank is equipped with the level control system of which level sensors are critical items. And it is necessary to ascertain the sensor state on-line. For this, a model-based fault detection and diagnosis(FDD) is introduced in this study. The dynamic control model is formulated from the relation of input-output flow rates and liquid-level of the deaerator storage tank. Then an adaptive state estimator is designed for the fault detection and diagnosis of sensors. The performance and effectiveness of the proposed FDD scheme are evaluated by applying the operation data of Yonggwang Units 3 & 4.

Cybersecurity Risk Assessment of a Diverse Protection System Using Attack Trees (공격 트리를 이용한 다양성보호계통 사이버보안 위험 평가)

  • Jung Sungmin;Kim Taekyung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.3
    • /
    • pp.25-38
    • /
    • 2023
  • Instrumentation and control systems measure and control various variables of nuclear facilities to operate nuclear power plants safely. A diverse protection system, a representative instrumentation and control system, generates a reactor trip and turbine trip signal by high pressure in a pressurizer and containment to satisfy the design requirements 10CFR50.62. Also, it generates an auxiliary feedwater actuation signal by low water levels in steam generators. Cybersecurity has become more critical as digital technology is gradually applied to solve problems such as performance degradation due to aging of analog equipment, increased maintenance costs, and product discontinuation. This paper analyzed possible cybersecurity threat scenarios in the diverse protection system using attack trees. Based on the analyzed cybersecurity threat scenario, we calculated the probability of attack occurrence and confirmed the cybersecurity risk in connection with the asset value.

Performance Analysis of Electronic Personal Dosimeter(EPD) for External Radiation Dosimetry (전자개인선량계(EPD)의 외부피폭방사선량 평가 성능분석)

  • Lee, Byoung-Il;Kim, Taejin;Lim, Young-Khi
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.4
    • /
    • pp.261-266
    • /
    • 2015
  • As performance of electronic personal dosimeter (EPD) used for auxiliary personal dosimeter in nuclear power plants (NPPs) has been being continuously improved, we investigated application cases in Korea and other countries and also tested it in NPPs to assess the performance of EPD for external radiation dosimetry. Result of performance tests done in domestic NPPs was similar to those obtained by IAEA in cooperation with EURADOS (IAEA-TECDOC-1564). In addition, EPD/TLD dose ratio has shown similar tendency of EPD/Film-badge dose ratio from the research by the Japan Atomic Power Company (JAPC) and EPD provided more conservative value than TLD or Film-badge. Although some EPD's failures have been discussed, EPD has shown continuous improvement according to the report of Institute of Nuclear Power Operation (INPO) and data from domestic NPPs. In conclusion, It is considered that the general performance of EPD is adequate for external radiation dosimetry compared with that of TLD, providing appropriate performance checking procedure and alternative measures for functional failure.

Analysis on Risk Factors of Reactor Containment Building Construction using Analytic Hierarchy Process (계층 분석 방법을 이용한 원자로 격납 건물 시공의 리스크 요인 분석)

  • Shin, Dae-Woong;Shin, Yoonseok;Kim, Gwang-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.4
    • /
    • pp.425-431
    • /
    • 2015
  • Since the construction of Kori 1 was completed in 1978, the construction projects for nuclear power plant are increasingly expanded into domestic and foreign sites. However, some of construction sites of nuclear power plant have the problems of process delay and cost loss due to lack of ability of risk management. The construction of reactor containment building in nuclear power plant is especially dotted with many risk factors because it needs professional skills and large-scale resources due to long duration compared with different construction phase. Therefore, it needs the study that analyzes risk factors expected in construction of reactor containment building and suggests way of stable performance of projects. So, this study assesses risk factors of construction of reactor containment building. For the objectives, this study uses survey for group of minority specialists of 36 experts. The risks of 24 factors is classified by criterions of process, cost, safety, and quality and the results of assessment is analyzed by analytic hierarchy process. As the results, the importance and priority of risk factors classified by each criterion were calculated and the applicability of analytic hierarchy process was identified to analyze risk factors of nuclear power plant construction. These will be baseline data for risk management in construction phase of reactor containment building.

PREDICTION OF THE REACTOR VESSEL WATER LEVEL USING FUZZY NEURAL NETWORKS IN SEVERE ACCIDENT CIRCUMSTANCES OF NPPS

  • Park, Soon Ho;Kim, Dae Seop;Kim, Jae Hwan;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.373-380
    • /
    • 2014
  • Safety-related parameters are very important for confirming the status of a nuclear power plant. In particular, the reactor vessel water level has a direct impact on the safety fortress by confirming reactor core cooling. In this study, the reactor vessel water level under the condition of a severe accident, where the water level could not be measured, was predicted using a fuzzy neural network (FNN). The prediction model was developed using training data, and validated using independent test data. The data was generated from simulations of the optimized power reactor 1000 (OPR1000) using MAAP4 code. The informative data for training the FNN model was selected using the subtractive clustering method. The prediction performance of the reactor vessel water level was quite satisfactory, but a few large errors were occasionally observed. To check the effect of instrument errors, the prediction model was verified using data containing artificially added errors. The developed FNN model was sufficiently accurate to be used to predict the reactor vessel water level in severe accident situations where the integrity of the reactor vessel water level sensor is compromised. Furthermore, if the developed FNN model can be optimized using a variety of data, it should be possible to predict the reactor vessel water level precisely.

A SMALL MODULAR REACTOR DESIGN FOR MULTIPLE ENERGY APPLICATIONS: HTR50S

  • Yan, X.;Tachibana, Y.;Ohashi, H.;Sato, H.;Tazawa, Y.;Kunitomi, K.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.3
    • /
    • pp.401-414
    • /
    • 2013
  • HTR50S is a small modular reactor system based on HTGR. It is designed for a triad of applications to be implemented in successive stages. In the first stage, a base plant for heat and power is constructed of the fuel proven in JAEA's $950^{\circ}C$, 30MWt test reactor HTTR and a conventional steam turbine to minimize development risk. While the outlet temperature is lowered to $750^{\circ}C$ for the steam turbine, thermal power is raised to 50MWt by enabling 40% greater power density in 20% taller core than the HTTR. However the fuel temperature limit and reactor pressure vessel diameter are kept. In second stage, a new fuel that is currently under development at JAEA will allow the core outlet temperature to be raised to $900^{\circ}C$ for the purpose of demonstrating more efficient gas turbine power generation and high temperature heat supply. The third stage adds a demonstration of nuclear-heated hydrogen production by a thermochemical process. A licensing approach to coupling high temperature industrial process to nuclear reactor will be developed. The low initial risk and the high longer-term potential for performance expansion attract development of the HTR50S as a multipurpose industrial or distributed energy source.

DEVELOPMENT OF REACTOR POWER CONTROL LOGIC FOR THE POWER MANEUVERING OF KALIMER-600

  • Seong, Seung-Hwan;Kang, Han-Ok;Kim, Seong-O
    • Nuclear Engineering and Technology
    • /
    • v.42 no.3
    • /
    • pp.329-338
    • /
    • 2010
  • We developed an achievable control logic for the reactor power level during a power maneuvering event and set up some constraints for the control of the reactor power in a conceptual sodium-cooled fast reactor (KALIMER-600) that was developed at KAERI. For simulating the dynamic behaviors of the plant, we developed a fast-running performance analysis code. Through various simulations of the power maneuvering event, we evaluated some suggested control logic for the reactor power and found an achievable control logic. The objective of the control logic is to search for the position of the control rods that would keep the average temperature of the primary pool constant and, concurrently, minimize the power deviation between the reactor and the BOP cycle during the power maneuvering. In addition, the flow rates of the primary pool and the intermediate loop should be changed according to the power level in order to not violate the constraints set up in this study. Also, we evaluated some movement speeds of the control rods and found that a fast movement of the control rods might cause the power to fluctuate during the power maneuvering event. We suggested a reasonable movement speed of the control rods for the developed control logic.

The Study Image Aquisition System for Radiation Source Using the Stereo Gamma-ray Detector (스테레오 감마선 탐지장치를 이용한 감마선원 분포측정 시스템에 관한 연구)

  • Hwang, Young-Gwan;Lee, Nam-Ho;Lee, Seung-Min
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.4
    • /
    • pp.197-203
    • /
    • 2015
  • Nuclear power plant has increased continuously for power production in all over the world and the interest about nuclear accident and the dismantling of aging nuclear power plant has been a growing. The leaked radioactive source that is generated by radiation accidents must detect and remove to minimized the damage as soon as possible. Gamma-ray detection system that have been developed until now cannot provide the precise position of radioactive sources because they detect and imaging the position of radiation sources in just two dimensions. In this paper, stereo gamma ray detection system has developed and the algorithm for calculation of the distance has implemented to be able to measure the distribution of the leakage gamma ray source for the system. Stereo camera calibration for distance detection was conducted with the correction pattern and LED light and we carried out performance test of the system for the LED light source and a gamma ray source. In both experiments the results of the performance test, it was confirmed to have a 5% error. The results of this paper is used as a material for the development of gamma-ray imaging device.

Performance assessment of HEPA filter against radioactive aerosols from metal cutting during nuclear decommissioning

  • Lee, Min-Ho;Yang, Wonseok;Chae, Nakkyu;Choi, Sungyeol
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.1043-1050
    • /
    • 2020
  • Radioactive aerosols are produced during the cutting of contaminated and activated metals. They must be collected and removed by a high-performing filtration system before releasing to the environment from the decommissioning workplace. The filtration system requires regular replacement to ensure the sufficient removal of radioactive aerosols because its filtration efficiency gradually decreases. This study evaluates the efficiency and lifetime of filters while cutting metals by using a plasma arc cutter. Particularly, this study considers the aerodynamic diameter distribution of number and mass concentrations for aerosols from 6 nm to 10 ㎛ when evaluating the performance of filters. After 20 time reuses for cutting operation performed in a cutting chamber, the removal efficiency is reduced from over 99 to below 93% at 2 ㎛. The results are used to analyze the lifetime of filters, the frequencies of their replacements, and impact on internal radiation dose.

The Network Performance Analysis of Distributed Control System using Software Tool (분산제어시스템 통신망의 소프트웨어 시뮬레이션을 통한 성능 분석)

  • Jo, H.S.;Oh, E.S.;Park, D.Y.;Song, S.I.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2292-2294
    • /
    • 2002
  • This paper presents the network of Distributed Control System(DCS) considering specification of nuclear power plant. The network is composed of field network, control network and information network. The protocol of control network is ring type and it is compared to ethernet type. This paper proposes the structure of DCS, the protocol of each network and analyzes the network traffic along data capacity of field network, control network, information network and the network performance. Network II.5 is used as traffic simulation tool.

  • PDF