Browse > Article
http://dx.doi.org/10.5516/NET.10.2012.070

A SMALL MODULAR REACTOR DESIGN FOR MULTIPLE ENERGY APPLICATIONS: HTR50S  

Yan, X. (Japan Atomic Energy Agency Nuclear Hydrogen and Heat Application Center)
Tachibana, Y. (Japan Atomic Energy Agency Nuclear Hydrogen and Heat Application Center)
Ohashi, H. (Japan Atomic Energy Agency Nuclear Hydrogen and Heat Application Center)
Sato, H. (Japan Atomic Energy Agency Nuclear Hydrogen and Heat Application Center)
Tazawa, Y. (Japan Atomic Energy Agency Nuclear Hydrogen and Heat Application Center)
Kunitomi, K. (Japan Atomic Energy Agency Nuclear Hydrogen and Heat Application Center)
Publication Information
Nuclear Engineering and Technology / v.45, no.3, 2013 , pp. 401-414 More about this Journal
Abstract
HTR50S is a small modular reactor system based on HTGR. It is designed for a triad of applications to be implemented in successive stages. In the first stage, a base plant for heat and power is constructed of the fuel proven in JAEA's $950^{\circ}C$, 30MWt test reactor HTTR and a conventional steam turbine to minimize development risk. While the outlet temperature is lowered to $750^{\circ}C$ for the steam turbine, thermal power is raised to 50MWt by enabling 40% greater power density in 20% taller core than the HTTR. However the fuel temperature limit and reactor pressure vessel diameter are kept. In second stage, a new fuel that is currently under development at JAEA will allow the core outlet temperature to be raised to $900^{\circ}C$ for the purpose of demonstrating more efficient gas turbine power generation and high temperature heat supply. The third stage adds a demonstration of nuclear-heated hydrogen production by a thermochemical process. A licensing approach to coupling high temperature industrial process to nuclear reactor will be developed. The low initial risk and the high longer-term potential for performance expansion attract development of the HTR50S as a multipurpose industrial or distributed energy source.
Keywords
HTTR; GTHTR300; HTGR; Gas Turbine; Hydrogen Production; Process Heat; IS Process;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 J. Chang, Y. W. Kim, K. Y. Lee, Y. W. Lee, W.J. Lee, J.M. Noh,M.H. Kim, H.S. Lim, Y.J. Shin, K.K. Bae and K.D. Jung. A study of a nuclear hydrogen production demonstration plant. Nuclear Engineering And Technology, Vol.39 No.2 April 2007   과학기술학회마을   DOI   ScienceOn
2 M. Richards and A. Shenoy, "H2-MHR Pre-conceptual Design Summary," Nucl. Eng. and Technology, 39(1), 2007.2.   과학기술학회마을   DOI   ScienceOn
3 I. Minatsuki, M. Tanihira, Y. Mizokami, Y. Miyoshi, H. Hayakawa, etc. The role of Japan's industry in the HTTR design and its construction, Nuclear Eng. Des. 233 (2004) 377-390.   DOI   ScienceOn
4 S. Saito, T. Tanaka, Y. Sudo, O. Baba, M. Shindo, et al., Design of High Temperature Engineering Test Reactor (HTTR), JAERI 1332, 1994.
5 S. Shiozawa, S. Fujikawa, T. Iyoku, K. Kunitomi, Y. Tachibana. Overview of HTTR design features. Nucl. Eng. Des. 233 (2004) 11-21.   DOI   ScienceOn
6 S. Fujikawa, H. Hayashi, T. Nakazawa, K. Kawasaki, T. Iyoku, S. Nakagawa, et al., Achievement of reactor-outlet coolant temperature of 950oC in HTTR. J Nucl Sci Technol 2004;41(12):1245-54.   DOI
7 K. Takamatsu. High temperature continuous operation in the HTTR (HP-11) - Summary of the test results in the high temperature operation mode. JAEA-Research 2010-038, 2010.
8 K. Takamatsu, X. Yan, S. Nakagawa, N. Sakaba, K. Kunitomi. Loss of Forced Cooling Test for HTGRs with Inherent Safety Features, Proc. 6th International topical meeting on high temperature reactor technology HTR2012, Tokyo, Japan, Oct 28-Nov. 1, 2012. Paper HTR2012-5-020.
9 K Onuki, S Kubo, A Terada, N Sakaba and R Hino. Thermochemical water-splitting cycle using iodine and sulfur. Energy Environ. Sci., 2009, 2, 491-497   DOI   ScienceOn
10 K Onuki, S Kubo, J Iwatsuki, S Kasakara, N Tanaka, Y Imai, and H Noguchi, R&D on Thermochemical IS process for Nuclear Hydrogen Production at JAEA, Proc GLOBAL 2011, Chiba, Japan, Dec. 11-16, 2011, Paper No. 392206
11 X. Yan, H. Sato, Y. Tachibana, K. Kunitomi, R. Hino, Evaluation of high temperature gas reactor for demanding cogeneration load follow, J. Nuclear Science and Technology, 49 (2012) 1, 121-131.   DOI
12 H. Sato, X. Yan, Y. Tachibana, Y. Kato. Assessment of load-following capability of VHTR cogeneration systems, Annals of Nuclear Energy, 49 (2012), 33-40.   DOI   ScienceOn
13 H. Sato. Safety and operability of high temperature gascooled reactor with power generation & hydrogen production systems, Ph.D. Thesis. 2012. Tokyo Institute of Technology, Japan.
14 X. Yan, H. Noguchi, H. Sato, Y. Tachibana, K. Kunitomi, R. Hino. Study of an incrementally-loaded multistage flash desalination system for optimum use of sensible waste heat from nuclear power plant, submitted to Intl. J. of Energy Res., 2012.
15 X. Yan, K. Kunitomi, T. Nakata, S. Shiozawa. Design and development of the GTHTR300. Nucl. Eng. Des., 222 (2003) 247-262   DOI   ScienceOn
16 X. Yan, T. Takizuka, K. Kunitomi, H. Itaka, K. Takahashi. Aerodynamic design, model test, and CFD analysis for a multistage axial helium compressor. J Turbomach 2008; 130(3): / 031018   DOI
17 S. Takada, T. Takizuka, K. Kunitomi, S. Kosugiyama, X. Yan, I. Matsumoto. Program for tests on magnetic bearing suspended rotor dynamics for gas turbine high temperature reactor (GTHTR300). AESJ Trans 2003;2(4):525-31.
18 S. Katanishi, K. Kunitomi. Safety evaluation on the pressurizaed accident in the gas turbine high temperature reactor (GTHTR300), Nucl. Eng. Des., 237 (2007) 1327-1380.
19 T. Nakata, S. Katanishi, S. Takada, X. Yan, K. Kunitomi. Nuclear, thermal and hydraulic design for gas turbine high temperature reactor (GTHTR300), AESJ Trans 2003;2(4):478-89.
20 M. Takei, S. Kosugiyama, T. Mouri, S. Katanishi, K. Kunitomi. Economical evaluation on gas turbine high temperature reactor 300 (GTHTR300), AESJ Trans 2006;5(2):109-117.
21 S. Katanishi, K. Kunitomi, M. Takei, T. Nakata, T. Watanabe, T. Izumiya. Feasibility study on high burnup fuel for gas turbine high temperature reactor (GTHTR300) (I), AESJ Trans 2002;1(4):373-83.
22 S. Katanishi, M. Takei, T. Nakata, K. Kunitomi, Feasibility study on high burnup fuel for gas turbine high temperature reactor (GTHTR300) (II), AESJ Trans 2004;3(1):67-75.
23 X. Yan, et al., "GTHTR300 Design Variants for Production of Electricity, Hydrogen or Both," Proc. 3rd Information Exchange Meeting on Nuclear Production of Hydrogen, OECD Nuclear Energy Agency, Oarai Japan, 5-7 October 2005.
24 K. Kunitomi, X. Yan, T. Nishihara, N. Sakaba, T. Mouri. JAEA's VHTR for hydrogen and electricity cogeneration: GTHTR300C. Nucl Eng Technol 39(1) (2007) 9-20.   DOI   ScienceOn
25 T. Nishihara, K. Ohashi, T. Murakami, K. Kunitomi. Safety design philosophy of hydrogen cogeneration high temperature gas cooled reactor (GTHTR300C). AESJ Trans 2006;5(4):325-33.
26 Xing Yan, S. Kasahara, Y. Tachibana, K. Kunitomi. Study of a nuclear energy supplied steelmaking system for nearterm application. Energy 39 (2012) 154-165.   DOI   ScienceOn
27 X. Yan, H. Noguchi, H. Sato, Y. Tachibana, K. Kunitomi, R. Hino. Study of an HTGR system for power generation, desalination and other cogeneration applications in the Middle East. Proc. 6th International topical meeting on high temperature reactor technology HTR2012, Tokyo, Japan, Oct 28-Nov. 1, 2012. Paper HTR2012-2-004.
28 International Energy Agency. 2011 Key World Energy Statistics. http://www.iea.org/textbase/nppdf/free/2011/key_world_energy_stats.pdf
29 K. Onuki, S. Kubo, N. Tanaka, and S. Kasahara, Thermochemical iodine-sulfur process. Chapter in Nuclear Hydrogen Production Handbook, (ed) Yan XL, Hino R, Florida, USA: CRC Press, 2011.
30 S. Kubo, H. Nakajima, S. Kasahara, S. Higashi, T. Masaki, H. Abe, et al., A demonstration study on a closed-cycle hydrogen production by thermochemical water-splitting iodine-sulfur process. Nucl Eng Des 2004;233(1-3):347-54.   DOI   ScienceOn
31 Generation-IV systems, Gen-IV international forum, http://www.gen-4.org/Technology/systems/index.htm; August 2012.
32 A technology roadmap for generation IV nuclear energy systems. The U.S. DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, 2002, http://www.gen-4.org/Technology/roadmap.htm; August 2012.
33 Lohnert G.H. Technical design features and essential safety-related properties of the HTR-Module. Nuclear Engineering and Design 121 (1990) 259-275.   DOI   ScienceOn
34 Candeli R, Arndt E, Barnert H. Status of the high temperature reactor (HTR) - Applications. Nuclear Engineering and Design 121 (1990) 249-258.   DOI   ScienceOn
35 L M. Lidsky, D D. Lanning. J. E. Staudt and X. L Yan H. Kaburaki, M. Mori, A direct cycle gas turbine power plant for near-terÔm application: MGR-GT, Energy 16 (1991) 177-186.   DOI   ScienceOn
36 A.I. van Heek*, M.M. Stempniewicz, D.F. da Cruz, J.B.M. de Haas. ACACIA: a small-scale power plant for near term deployment in new markets. Nuclear Engineering and Design 234 (2004) 71-86.   DOI   ScienceOn