• 제목/요약/키워드: Nrf2/HO-1 signaling

검색결과 73건 처리시간 0.027초

Free Radical Scavenging and Antioxidant Activities of Water Extracts from Amannia multiflora, Amannia coccinea, Salix gracilistyla Inhabiting Along the Nakdong River (Republic of Korea)

  • Jayasingha Arachchige Chathuranga Chanaka Jayasingha;Mi-Hwa Lee;Chang-Hee Kang;Yung Hyun Choi;Gi-Young Kim
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2022년도 추계학술대회
    • /
    • pp.31-31
    • /
    • 2022
  • Plant-derived antioxidants are used as a healthy diet and are known to inhibit various human diseases. In this study, we investigated free radical scavenging and antioxidant activity of extracts from three plants (Ammannia multiflora, Ammannia coccinea and Salix gracilistyla) with the most DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity from 196 plant extracts inhabiting along Nakdong River in Republic of Korea. The three extracts also have strong total antioxidant activity. Moreover, the extracts inhibited hydrogen peroxide (H2O2)-induced reactive oxygen species production and depolarized mitochondrial membrane potential in RAW264.7 macrophages. In zebrafish larvae, 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorescent intensity, induced by H2O2, was markedly reduced by the extracts of A. multiflora, A. coccinea and S. gracilistyla. Meanwhile, the extracts were upregulated Nrf2 and HO-1 expression, and an HO-1 inhibitor reversed the extract-induced oxidative responses both in vivo and in vitro. The data suggest that the extracts of A. multiflora, A. coccinea, and S. gracilistyla exert potential free radical scavenging and antioxidant capacities both in vivo and in vitro by activating the Nrf2/HO-1 signaling pathway.

  • PDF

Metformin alleviates chronic obstructive pulmonary disease and cigarette smoke extract-induced glucocorticoid resistance by activating the nuclear factor E2-related factor 2/heme oxygenase-1 signaling pathway

  • Tao, Fulin;Zhou, Yuanyuan;Wang, Mengwen;Wang, Chongyang;Zhu, Wentao;Han, Zhili;Sun, Nianxia;Wang, Dianlei
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권2호
    • /
    • pp.95-111
    • /
    • 2022
  • Chronic obstructive pulmonary disease (COPD) is an important healthcare problem worldwide. Often, glucocorticoid (GC) resistance develops during COPD treatment. As a classic hypoglycemic drug, metformin (MET) can be used as a treatment strategy for COPD due to its anti-inflammatory and antioxidant effects, but its specific mechanism of action is not known. We aimed to clarify the role of MET on COPD and cigarette smoke extract (CSE)-induced GC resistance. Through establishment of a COPD model in rats, we found that MET could improve lung function, reduce pathological injury, as well as reduce the level of inflammation and oxidative stress in COPD, and upregulate expression of nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), multidrug resistance protein 1 (MRP1), and histone deacetylase 2 (HDAC2). By establishing a model of GC resistance in human bronchial epithelial cells stimulated by CSE, we found that MET reduced secretion of interleukin-8, and could upregulate expression of Nrf2, HO-1, MRP1, and HDAC2. MET could also increase the inhibition of MRP1 efflux by MK571 significantly, and increase expression of HDAC2 mRNA and protein. In conclusion, MET may upregulate MRP1 expression by activating the Nrf2/HO-1 signaling pathway, and then regulate expression of HDAC2 protein to reduce GC resistance.

CO/HO-1 Induces NQO-1 Expression via Nrf2 Activation

  • Kim, Hyo-Jeong;Zheng, Min;Kim, Seul-Ki;Cho, Jung-Jee;Shin, Chang-Ho;Joe, Yeon-Soo;Chung, Hun-Taeg
    • IMMUNE NETWORK
    • /
    • 제11권6호
    • /
    • pp.376-382
    • /
    • 2011
  • Background: Carbon monoxide (CO) is a cytoprotective and homeostatic molecule with important signaling capabilities in physiological and pathophysiological situations. CO protects cells/tissues from damage by free radicals or oxidative stress. NAD(P)H:quinone oxidoreductase (NQO1) is a highly inducible enzyme that is regulated by the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway, which is central to efficient detoxification of reactive metabolites and reactive oxygen species (ROS). Methods: We generated NQO1 promoter construct. HepG2 cells were treated with CO Releasing Molecules-2 (CORM-2) or CO gas and the gene expressions were measured by RT-PCR, immunoblot, and luciferase assays. Results: CO induced expression of NQO1 in human hepatocarcinoma cell lines by activation of Nrf2. Exposure of HepG2 cells to CO resulted in significant induction of NQO1 in dose- and time-dependent manners. Analysis of the NQO1 promoter indicated that an antioxidant responsible element (ARE)-containing region was critical for the CO-induced Nrf2-dependent increase of NQO1 gene expression in HepG2 cells. Conclusion: Our results suggest that CO-induced Nrf2 increases the expression of NQO1 which is well known to detoxify reactive metabolites and ROS.

머위 에틸아세테이트 분획물의 LLC-PK1 세포에서의 Nrf-2 매개 항산화 효과 (Ethyl Acetate Fraction from Petasites japonicus Attenuates Oxidative Stress through Regulation of Nuclear Factor E2-Related Factor-2 Signal Pathway in LLC-PK1 Cells)

  • 김지현;이재민;이상현;조은주
    • 생약학회지
    • /
    • 제47권1호
    • /
    • pp.55-61
    • /
    • 2016
  • Antioxidant effects and nuclear factor E2-related factor-2 (Nrf-2) signal pathway of methanol extract and 4 fractions [n-hexane, methylene chloride, ethyl acetate (EtOAc), and n-butanol fractions] from Petasites japonicus were investigated. The EtOAc fraction showed highest polyphenol and flavonoid contents among other fractions. In addition, EtOAc fraction showed stronger scavenging activity against superoxide anion radical than other fractions. Furthermore, we investigated antioxidants effects of the EtOAc fraction under cellular system using $LLC-PK_1$ cells. The EtOAc fraction dose-dependently increased the antioxidant protein expressions of heme oxygenase 1 (HO-1) and thioredoxin reductase 1 (TrxR1) known to be involved in oxidative stress, through activation of Nrf-2. The treatment of EtOAc fraction ($100{\mu}g/mL$) led to the elevation of the high expression of Nrf-2-dependent factor such as HO-1 and TrxR1. These results indicated that the EtOAc fraction of P. japonicus showed high antioxidant activity by regulation of Nrf-2 signaling pathway.

3',4',5',5,7-Pentamethoxyflavone Sensitizes Cisplatin-Resistant A549 Cells to Cisplatin by Inhibition of Nrf2 Pathway

  • Hou, Xiangyu;Bai, Xupeng;Gou, Xiaoli;Zeng, Hang;Xia, Chen;Zhuang, Wei;Chen, Xinmeng;Zhao, Zhongxiang;Huang, Min;Jin, Jing
    • Molecules and Cells
    • /
    • 제38권5호
    • /
    • pp.396-401
    • /
    • 2015
  • Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important redox-sensitive transcription factor that regulates the expression of several cytoprotective genes. More recently, genetic analyses of human tumors have indicated that Nrf2 may cause resistance to chemotherapy. In this study, we found that the expression levels of Nrf2 and its target genes GCLC, HO-1, NQO1 were significantly higher in cisplatin-resistant A549 (A549/CDDP) cells than those in A549 cells, and this resistance was partially reversed by Nrf2 siRNA. 3,4,5,5,7-Pentamethoxyflavone (PMF), a natural flavon extracted from Rutaceae plants, sensitized A549/CDDP to CDDP and substantially induced apoptosis compared with that of CDDP alone treated group, and this reversal effect decreased when Nrf2 was downregulated by siRNA. Mechanistically, PMF reduced Nrf2 expression leading to a reduction of Nrf2 downstream genes, and in contrast, this effect was decreased by blocking Nrf2 with siRNA. Taken together, these results demonstrated that PMF could be used as an effective adjuvant sensitizer to increase the efficacy of chemotherapeutic drugs by downregulating Nrf2 signaling pathway.

흰쥐 관절연골세포에서 NO donor에 의해 유도된 HO-1 발현에서 peroxynitrite의 관련성 연구 (Involvement of Peroxynitrite in NO Donor-Induced HO-1 Expression in Rat Articular Chondrocytes)

  • 송주동;김강미;김종민;유영현;박영철
    • 생명과학회지
    • /
    • 제21권4호
    • /
    • pp.486-493
    • /
    • 2011
  • Nitric oxide (NO) donors는 heme oxygenase-1 (HO-1)의 강력한 유도제이다. 그러나 NO donors에 의한 HO-1의 발현이 NO donor에 의해 방출되는 NO에 의한 직접적인 영향인지는 불분명하다. 본 연구에서 흰쥐의 무릎으로부터 분리 배양한 관절연골세포에서 HO-1의 발현에 NO donors의 영향을 조사하였다. NO donors (SIN-1, SNAP 그리고 SNP)는 HO-1의 mRNA와 단백질의 합성을 크게 증가시켰다. 그리고 NO의 표적 분자인 guanylate cyclase와 protein kinase G의 관련성을 살펴본 결과, NO donors에 의한 Nrf2와 HO-1의 발현증가와는 무관한 것으로 보였다. 흥미롭게도, NO scavenger인 carboxy-PTIO와 SOD mimetic TEMPOL은 NO donors에 의한 HO-1의 발현을 억제하였다. 게다가, peroxynitrite scavenger인 MnTBAP에 의해서도 Nrf2와 HO-1의 발현이 완전히 억제되었다. Peroxynitrite는 NO와 superoxide의 반응에 의해 세포 내에서 자연적으로 형성되는 물질이므로 peroxynitrite가 관절연골세포에서 HO-1의 발현에 직접적인 영향을 주는지를 관찰하였다. 관절연골세포에 peroxynitrite를 처리한 결과, 시간과 농도 의존적으로 Nrf2와 HO-1의 발현을 크게 증가시켰다. 본 실험 자료 는 NO donors에 의한 HO-1의 발현증가는 방출되는 NO의 직접적인 영향이라기 보다는 NO와 superoxide의 반응으로 형성되는 peroxynitrite에 의해 유도된다는 것을 시사한다.

홍삼 사포닌 분획의 Nrf2 Keap1 신호전달체계 조절을 통한 지방축적 및 활성산소종 억제효과 (Red ginseng-derived saponin fraction inhibits lipid accumulation and reactive oxygen species production by activating nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) pathway)

  • 김채영;강보빈;황지수;최현선
    • 한국식품과학회지
    • /
    • 제50권6호
    • /
    • pp.688-696
    • /
    • 2018
  • 본 연구에서는 홍삼 사포닌 분획(SF)으로부터 진세노사이드의 조성을 분석하고 지방세포의 분화 및 지방축적에 대한 효과를 측정하였다. SF는 지방분화인자인 $PPAR{\gamma}$, $C/EBP{\alpha}$의 단백질 양을 억제함으로써 지방분화 동안 효과적으로 지방축적을 억제하였으며 주로 지방분화 초기시점부터 지방분화 초기인자인 $C/EBP{\beta}$, KLF2의 조절작용을 통해 지방축적을 억제하는 것으로 관찰되었다. SF는 또한 지방분화 동안 생성되는 ROS의 생성을 효과적으로 억제하였는데 이는 SF가 산화방지 시스템인 Nrf2/Keap1 경로를 활성화하기 때문으로 판단되며 특히 Nrf2의 핵 내로의 진입을 활성화 함으로써 Nrf2의 타겟 산화방지 분자들인 HO-1, NQO1의 발현을 촉진하였다. 이는 지방분화 동안 SF의 지방축적 억제 효과가 Nrf2의 활성화와 밀접하게 관련이 있음을 보여준다.

대식세포에서 Nrf2/HO-1경로를 통한 청심연자음의 항산화효과 (Anti-oxidative Effect of Chungsimyeonja-um (CSYJE) via Nrf2/HO-1 Pathway Activity in Lipopolysaccharide (LPS) Induced RAW 264.7 Macrophages)

  • 전선홍;오솔라;김소정;전보희;성진영;김용민
    • 대한화장품학회지
    • /
    • 제46권3호
    • /
    • pp.253-263
    • /
    • 2020
  • 활성산소종(reactive oxygen species, ROS)은 우리 몸의 항상성 유지에 있어 중요한 역할을 한다. 그러나 과도한 ROS의 생성은 단백질, 지질, 핵산과 같은 세포 구성성분을 손상시키고 피부노화를 촉진시킨다. 이에 본 연구에서는 과도한 산화 스트레스를 예방하기 위해 Chungsimyeonja-um (CSYJE)의 항산화 효과를 확인하였다. 먼저 DPPH 및 ABTS assay를 실시하여 CSYJE의 항산화 효과를 확인한 결과 농도 의존적으로 radical 소거 활성을 확인하였다. 세포생존율 확인을 위해 MTT assay를 실시한 결과 1,000 ㎍/mL 농도에서 세포 독성이 없음을 확인하였다. 항산화 관련 단백질인 nuclear-E2-related factor 2 (Nrf2), Heme oxygenase-1 (HO-1)의 발현 수준을 확인하기 위해 western blotting을 실시한 결과 농도 의존적으로 발현이 증가하는 것을 확인하였다. 세포 내 ROS유발 물질인 lipopolysaccharide (LPS)로 ROS를 유도한 후, ROS생성 억제효과를 확인하기 위해 DCF-DA 염색법을 실시한 결과 농도 의존적으로 ROS 생성 억제효과를 확인하였으며 ROS의 생성으로 인한 염증성 사이토카인과 염증인자의 mRNA발현 수준을 확인하기 위해 real-time RT-PCR을 실시한 결과 농도 의존적으로 염증성 사이토카인과 염증인자의 mRNA 발현을 억제시켰다. 따라서, 본 연구는 Nrf2/HO-1 신호 전달 경로 활성을 통해 CSYJE의 항산화효과를 확인했으며 이는 CSYJE가 활성산소를 억제하여 항산화 화장품의 재료로서 사용될 수 있음을 시사한다.

Nrf2-mediated activation of HO-1 is required in the blocking effect of compound K, a ginseng saponin metabolite, against oxidative stress damage in ARPE-19 human retinal pigment epithelial cells

  • Cheol Park;Hee-Jae Cha;Kyoung-Seob Song;Heui-Soo Kim;EunJin Bang;Hyesook Lee;Cheng-Yun Jin;Gi-Young Kim;Yung Hyun Choi
    • Journal of Ginseng Research
    • /
    • 제47권2호
    • /
    • pp.311-318
    • /
    • 2023
  • Background: The beneficial effects of compound K (CK) on different chronic diseases have been shown to be at least related to antioxidant action. Nevertheless, since its antioxidant activity in human retinal pigment epithelial (RPE) cells is still unknown, here we investigated whether CK alleviates oxidative stress-stimulated damage in RPE ARPE-19 cells. Methods: The cytoprotective consequence of CK in hydrogen peroxide (H2O2)-treated cells was evaluated by cell viability, DNA damage, and apoptosis assays. Fluorescence analysis and immunoblotting were performed to investigate the inhibitory action of CK on reactive oxygen species (ROS) production and mitochondrial dysfunction. Results: H2O2-promoted cytotoxicity, oxidative stress, DNA damage, mitochondrial impairment, and apoptosis were significantly attenuated by CK in ARPE-19 cells. Furthermore, nuclear factor erythroid 2-related factor 2 (Nrf2) phosphorylation level and its shuttling to the nucleus were increased, which was correlated with upregulated activation of heme oxygenase-1 (HO-1). However, zinc protoporphyrin, a blocker of HO-1, significantly abrogated the preventive action of CK in H2O2-treated ARPE-19 cells. Conclusion: This study indicates that activation of Nrf2/HO-1 signaling by CK plays an important role in rescuing ARPE-19 cells from oxidative cellular damage.

Mechanisms of Resorcinol Antagonism of Benzo[a]pyrene-Induced Damage to Human Keratinocytes

  • Lee, Seung Eun;Kwon, Kitae;Oh, Sae Woong;Park, Se Jung;Yu, Eunbi;Kim, Hyeyoun;Yang, Seyoung;Park, Jung Yoen;Chung, Woo-Jae;Cho, Jae Youl;Lee, Jongsung
    • Biomolecules & Therapeutics
    • /
    • 제29권2호
    • /
    • pp.227-233
    • /
    • 2021
  • Benzo[a]pyrene (B[a]P) is a polycyclic aromatic hydrocarbon and ubiquitous environmental toxin with known harmful effects to human health. Abnormal phenotypes of keratinocytes are closely associated with their exposure to B[a]P. Resorcinol is a component of argan oil with reported anticancer activities, but its mechanism of action and potential effect on B[a]P damage to the skin is unknown. In this study, we investigated the effects of resorcinol on B[a]P-induced abnormal keratinocyte biology and its mechanisms of action in human epidermal keratinocyte cell line HaCaT. Resorcinol suppressed aryl hydrocarbon receptor (AhR) activity as evidenced by the inhibition of B[a]P-induced xenobiotic response element (XRE)-reporter activation and cytochrome P450 1A1 (CYP1A1) expression. In addition, resorcinol attenuated B[a]P-induced nuclear translocation of AhR, and production of ROS and pro-inflammatory cytokines. We also found that resorcinol increased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activity. Antioxidant response element (ARE)-reporter activity and expression of ARE-dependent genes NAD(P)H dehydrogenase [quinone] 1 (NQO1), heme oxygenase-1 (HO-1) were increased by resorcinol. Consistently, resorcinol treatment induced nuclear localization of Nrf2 as seen by Western analysis. Knockdown of Nrf2 attenuated the resorcinol effects on ARE signaling, but knockdown of AhR did not affect resorcinol activation of Nrf2. This suggests that activation of antioxidant activity by resorcinol is not mediated by AhR. These results indicate that resorcinol is protective against effects of B[a]P exposure. The mechanism of action of resorcinol is inhibition of AhR and activation of Nrf2-mediated antioxidant signaling. Our findings suggest that resorcinol may have potential as a protective agent against B[a]P-containing pollutants.