Browse > Article
http://dx.doi.org/10.14348/molcells.2015.2183

3',4',5',5,7-Pentamethoxyflavone Sensitizes Cisplatin-Resistant A549 Cells to Cisplatin by Inhibition of Nrf2 Pathway  

Hou, Xiangyu (School of Pharmaceutical Science, Sun Yat-sen University)
Bai, Xupeng (School of Pharmaceutical Science, Sun Yat-sen University)
Gou, Xiaoli (School of Pharmaceutical Science, Sun Yat-sen University)
Zeng, Hang (School of Pharmaceutical Science, Sun Yat-sen University)
Xia, Chen (School of Pharmaceutical Science, Sun Yat-sen University)
Zhuang, Wei (School of Pharmaceutical Science, Sun Yat-sen University)
Chen, Xinmeng (School of Pharmaceutical Science, Sun Yat-sen University)
Zhao, Zhongxiang (School of Chinese Materia Medica, Guangzhou University of Chinese Medicine)
Huang, Min (School of Pharmaceutical Science, Sun Yat-sen University)
Jin, Jing (School of Pharmaceutical Science, Sun Yat-sen University)
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important redox-sensitive transcription factor that regulates the expression of several cytoprotective genes. More recently, genetic analyses of human tumors have indicated that Nrf2 may cause resistance to chemotherapy. In this study, we found that the expression levels of Nrf2 and its target genes GCLC, HO-1, NQO1 were significantly higher in cisplatin-resistant A549 (A549/CDDP) cells than those in A549 cells, and this resistance was partially reversed by Nrf2 siRNA. 3,4,5,5,7-Pentamethoxyflavone (PMF), a natural flavon extracted from Rutaceae plants, sensitized A549/CDDP to CDDP and substantially induced apoptosis compared with that of CDDP alone treated group, and this reversal effect decreased when Nrf2 was downregulated by siRNA. Mechanistically, PMF reduced Nrf2 expression leading to a reduction of Nrf2 downstream genes, and in contrast, this effect was decreased by blocking Nrf2 with siRNA. Taken together, these results demonstrated that PMF could be used as an effective adjuvant sensitizer to increase the efficacy of chemotherapeutic drugs by downregulating Nrf2 signaling pathway.
Keywords
3',4',5',5,7-Pentamethoxyflavone; chemoresistance; cisplatin; lung cancer; Nrf2;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Boesch-Saadatmandi, C., Wagner, A.E., Graeser, A.C., Hundhausen, C., Wolffram, S., and Rimbach, G. (2009). Ochratoxin A impairs Nrf2-dependent gene expression in porcine kidney tubulus cells. J. Anim. Physiol. Anim. Nutr. 93, 547-554.   DOI   ScienceOn
2 Cai, H., Sale, S., Schmid, R., Britton, R.G., Brown, K., Steward, W.P., and Gescher, A.J. (2009). Flavones as colorectal cancer chemopreventive agents--phenol-o-methylation enhances efficacy. Cancer Prev. Res. 2, 743-750.   DOI   ScienceOn
3 Chen, F., Liu, Y., Wang, S., Guo, X., Shi, P., Wang, W., and Xu, B. (2013). Triptolide, a Chinese herbal extract, enhances drug sensitivity of resistant myeloid leukemia cell lines through downregulation of HIF-1a and Nrf2. Pharmacogenomics 14, 1305-1317.   DOI   ScienceOn
4 Chian, S., Li, Y. Y., Wang, X.J., and Tang, X.W. (2014). Luteolin sensitizes two oxaliplatin-resistant colorectal cancer cell lines to chemotherapeutic drugsvia inhibition of the Nrf2 pathway. Asian Pac. J. Cancer Prev. 15, 2911-2916.   DOI   ScienceOn
5 D'Addario, G., Felip, E., and ESMO Guidelines Working Group. (2009). Non-small-cell lung cancer: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann. Oncol. 20, 68-70.
6 El-Sheikh, A.A., Greupink, R., Wortelboer, H.M., van den Heuvel, J.J., Schreurs, M., Koenderink, J.B., Masereeuw, R., and Russel, F.G. (2013). Interaction of immunosuppressive drugs with human organic anion transporter (OAT) 1 and OAT3, and multidrug resistance-associated protein (MRP) 2 and MRP4. Transl. Res. 162, 398-409.   DOI   ScienceOn
7 Fujimori, S., Abe, Y., Nishi, M., Hamamoto, A., Inoue, Y., Ohnishi, Y., Nishime, C., Matsumoto, H., Yamazaki, H., Kijima, H., et al. (2004). The subunits of glutamate cysteine ligase enhance cisplatin resistance in human non-small cell lung cancer xenografts in vivo. Int. J. Oncol. 25, 413-418.
8 Gao, A.M., Ke, Z.P., Shi, F., Sun, G.C., and Chen, H. (2013a). Chrysin enhances sensitivity of BEL-7402/ADM cells to doxorubicin by suppressing PI3K/Akt/Nrf2 and ERK/Nrf2 pathway. Chem. Biol. Interact. 206, 100-108.   DOI   ScienceOn
9 Gao, A.M., Ke, Z.P., Wang, J.N., Yang, J.Y., Chen, S.Y., and Chen, H. (2013b). Apigenin sensitizes doxorubicin-resistant hepatocellular carcinoma BEL-7402/ADM cells to doxorubicin via inhibiting PI3K/Akt/Nrf2 pathway. Carcinogenesis 34, 1806-1814.   DOI   ScienceOn
10 Hayashi, A., Suzuki, H., Itoh, K., Yamamoto, M., and Sugiyama, Y. (2003). Transcription factor Nrf2 is required for the constitutive and inducible expression of multidrug resistance-associated protein1 in mouse embryo fibroblasts. Biochem. Biophs. Res. Commun. 310, 824-829.   DOI   ScienceOn
11 Hayes, J.D., and McMahon, M. (2009). NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem. Sci. 34, 176-188.   DOI   ScienceOn
12 Itoh, K., Mimura, J. and Yamamoto, M. (2010). Discovery of the negative regulator of Nrf2, Keap1: a historical overview. Antioxid. Redox Signal. 13, 1665-1678.   DOI   ScienceOn
13 Kinoshita, T. and Firman, K. (1997). Myricetin 5,7,3',4',5'-pentamethyl ether and other methylated flavonoids from Murraya Paniculata. Phytochemistry 45, 179-181   DOI   ScienceOn
14 Jaiswal, A.K. (2004). Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic. Biol. Med. 36, 1199-1207.   DOI   ScienceOn
15 Ji, X., Wang, H., Zhu, J., Zhu, L., Pan, H., Li, W., Zhou, Y., Cong, Z., Yan, F., and Chen, S. (2013). Knockdown of Nrf2 suppresses glioblastoma angiogenesis by inhibiting hypoxia-induced activation of HIF-1alpha. Int. J. Cancer 135, 574-584.
16 Kim, J.K., and Jang, H.D. (2014). Nrf2-mediated HO-1 induction coupled with the ERK signaling pathway contributes to indirect antioxidant capacity of caffeic acid phenethyl ester in HepG2 cells. Int. J. Mol. Sci. 15, 12149-12165.   DOI   ScienceOn
17 Kiyohara, C., Yoshimasu, K., Takayama, K., and Nakanishi, Y. (2005). NQO1, MPO, and the risk of lung cancer: A HuGE review. Genet. Med. 7, 463-478.   DOI
18 Kweon, M.H., Adhami, V.M., Lee, J.S., and Mukhtar, H. (2006). Constitutive overexpression of Nrf2-dependent heme oxygenase- 1 in A549 cells contributes to resistance to apoptosis induced by epigallocatechin 3-gallate. J. Biol. Chem. 281, 33761-33772.   DOI
19 Langer, C.J., Manola, J., Bernardo, P., Kugler, J.W., Bonomi, P., Cella, D., and Johnson, D.H. (2002). Cisplatin-based therapy for elderly patients with advanced non-small-cell lung cancer: implications of eastern cooperative oncology group 5592, a randomized trial. J. Natl. Cancer Inst. 94, 173-181.   DOI   ScienceOn
20 Lim, J., Lee, S.H., Cho, S., Lee, I.S., Kang, B.Y., and Choi, H.J. (2013). 4-methoxychalcone enhances cisplatin-induced oxidative stress and cytotoxicity by inhibiting the Nrf2/ARE-mediated defense mechanism in A549 lung cancer cells. Mol. Cells 36, 340-346.   DOI
21 Longley, D.B., and Johnston, P.G. (2005). Molecular mechanisms of drug resistance. J. Pathol. 205, 275-292.   DOI   ScienceOn
22 Lu, Y.Q., Wang, L.Y., Luo, Y.P. (2011). The antifungal activities and composition analysis of the essential oil from Murraya paniculata. Agrochemicals 50, 443-446.
23 Maher, J.M., Aleksunes, L.M., Dieter, M.Z., Tanaka, Y., Peters, J.M., Manautou, J.E., and Klaassen, C.D. (2008). Nrf2- and PPAR alpha-mediated regulation of hepatic Mrp transporters after exposure to perfluorooctanoic acid and perfluorodecanoic acid. Toxicol. Sci. 106, 319-328.   DOI   ScienceOn
24 Na, H.K., and Surh, Y.J. (2014). Oncogenic potential of Nrf2 and its principal target protein heme oxygenase-1. Free Radic. Biol. Med. 67, 353-365.   DOI   ScienceOn
25 Ohnuma, T., Matsumoto, T., Itoi, A., Ayako Kawana, Nishiyama, T., Ogura, K., and Hiratsuka, A. (2011). Enhanced sensitivity of A549 cells to the cytotoxic action of anticancer drugs via suppression of Nrf2 by procyanidins from Cinnamomi Cortex extract. Biochem. Biophys. Res. Commun. 413, 3623-3629.
26 Ren, D., Villeneuve, N.F., Jiang, T., Wu, T., Lau, A., Toppin, H.A., and Zhang, D.D. (2011). Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proc. Natl. Acad. Sci. USA 108, 1433-1438.   DOI   ScienceOn
27 Singh, A., Boldin-Adamsky, S., Thimmulappa, R.K., Rath, S.K., Ashush, H., Coulter, J., Blackford, A., Goodman, S.N., Bunz, F., Watson, W.H., et al. (2008). RNAi-mediated silencing of nuclear factor erythroid-2-related factor 2 gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy. Cancer Res. 68, 7975-7984.   DOI   ScienceOn
28 Shim, G.S., Manandhar, S., Shin, D.H., Kim, T.H., and Kwak, M.K. (2009). Acquisition of doxorubicin resistance in ovarian carcinoma cells accompanies activation of the NRF2 pathway. Free Radic. Biol. Med. 47, 1619-1631.   DOI   ScienceOn
29 Signore, M., Ricci-Vitiani, L., and De Maria, R. (2013). Targeting apoptosis pathways in cancer stem cells. Cancer Lett. 332, 374-382.   DOI   ScienceOn
30 Singh, A., Misra V., Thimmulappa R.K., Lee H., Ames S., Hoque M.O., Herman J.G., Baylin S.B., Sidransky D., Gabrielson E., et al. (2006) Dysfunctional KEAP1-NRF2 interaction in non-smallcell lung cancer. PLoS Med. 3, 1865-1874.
31 Soeiro, M.N., and Castro, S.L. (2009). Trypanosoma cruzi targets for new chemotherapeutic approaches. Expert Opin. Ther. Targets 13, 105-121.   DOI
32 Tang, X., Wang, H., Fan, L., Wu, X., Xin, A., Ren, H., and Wang, X.J. (2011). Luteolin inhibits Nrf2 leading to negative regulation of the Nrf2/ARE pathway and sensitization of human lung carcinoma A549 cells to therapeutic drugs. Free Radic. Biol. Med. 50, 1599-1609.   DOI   ScienceOn
33 Tomazela, D.M., Pupo, M.T., Passador, E.A., da Silva, M.F., Vieira, P.C., Fernandes, J.B., Fo, E.R., Oliva, G., and Pirani, J.R. (2000). Pyrano chalcones and a flavone from Neoraputia magnifica and their Trypanosoma cruzi glycosomal glyceraldehyde 3-phosphate dehydrogenase inhibitory activities. Phytochemistry 55, 643-651.   DOI   ScienceOn
34 Zhong, Y., Zhang, F., Sun, Z., Zhou, W., Li, Z.Y., You, Q.D., Guo, Q.L., and Hu, R. (2013). Drug resistance associates with activation of Nrf2 in MCF-7/DOX cells, and wogonin reverses it by down-regulating Nrf2-mediated cellular defense response. Mol. Carcinog. 52, 824-834.
35 Venugopal, R., and Jaiswal, A.K. (1996). Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene. Proc. Natl. Acad. Sci. USA 93, 14960-14965.   DOI
36 Wang, X.J., Sun, Z., Villeneuve, N.F., Zhang, S., Zhao, F., Li, Y., Chen, W., Yi, X., Zheng, W., Wondrak, G.T., et al. (2008). Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis 29, 1235-1243.   DOI   ScienceOn
37 Was, H., Cichon, T., Smolarczyk, R., Rudnicka, D., Stopa, M., Chevalier, C., Leger, J.J., Lackowska, B., Grochot, A., Bojkowska, K., et al. (2006). Overexpression of heme oxygenase-1 in murine melanoma: increased proliferation and viability of tumor cells, decreased survival of mice. Am. J. Pathol. 169, 2181-2198.   DOI   ScienceOn