• 제목/요약/키워드: Nozzle speed

검색결과 464건 처리시간 0.025초

수치 해석을 이용한 감압 회류 수조 설계 (Depressurized Circulating Water Channel Design Using CFD)

  • 부경태;조희상;신수철
    • 대한조선학회논문집
    • /
    • 제40권4호
    • /
    • pp.22-29
    • /
    • 2003
  • New high-speed depressurized circulating water channel was designed by using the CFD code. Flow in the channel has free surface and pressure in the test section can be depressed. In this study, Flow separation and bubble occurrence were considered in designing the contraction nozzle shape for better flow uniformity Tn the test section. To supplement velocity defect due to the free surface, nozzle injection system more effective in high-speed flow was installed instead of drum system. Necessary power and injection techniques were proposed. And guide vane arrangement was analyzed to reduce the flow resistance and keep quiet free surface from ´surging´. Wave absorber was devised to reduce the wave resistance and to prevent the entrainment of air to the diffuser.

회전연료노즐 형상변경에 따른 분무특성 (Spray Characteristics of the Rotating Fuel Nozzle with Orifice Geometry)

  • 장성호;최현경;이동훈;유경원;최성만
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제30회 춘계학술대회논문집
    • /
    • pp.240-243
    • /
    • 2008
  • 회전식 연료 노즐의 분무특성을 알기 위해서 고속회전 시험장치를 이용하여 실험적 연구를 수행하였다. 시험장치는 연료공급장치, 고속 회전장치 그리고 아크릴 케이스로 구성되어있다. Injection orifice의 직경 및 개수를 변화시켜가며 분무실험을 수행하였다. 액적의 크기 및 속도는 PDPA(Phase Doppler Particle Analyzer)시스템을 이용하여 측정하였다. 실험결과로부터 Injection orifice의 직경 및 개수변화에 따른 회전식 노즐의 분무특성을 이해 할 수 있었다.

  • PDF

LES를 이용한 몰드 내 탕면 변동 거동 수치해석 - 노즐 형상에 따른 진동 주파수 분석 (Large Eddy Simulation of Fluctuating Mold Level - Effects of Nozzle Geometry on Oscillation Frequency)

  • 이경준;양경수;조명종;황종연
    • 대한금속재료학회지
    • /
    • 제50권2호
    • /
    • pp.129-135
    • /
    • 2012
  • High speed casting technology is an attractive method to increase the productivity of continuous casting. However, high speed casting causes flow instability of molten steel in a mold. In this study, Large Eddy Simulation (LES) has been performed to identify the characteristics of mold flow for various shapes of submerged entry nozzles. The LES code has been newly developed to efficiently compute the two-phase flow by using the Fractional Step Method (FSM) combined with the Volume of Fluid (VOF) method. The Immersed Boundary Method was used to implement the shape of the submerged entry nozzle. Three cases of discharge angle of the submerged entry nozzle were computed and compared. The current results shed light on improving shape design of a submerged entry nozzle.

로켓 노즐 공력하중 특성에 대한 고속 풍동시험 (High Speed Wind Tunnel Test on the Aerodynamic Load Characteristics of Rocket Nozzle)

  • 라승호;옥호남;김인선;최성욱
    • 한국항공우주학회지
    • /
    • 제32권9호
    • /
    • pp.35-40
    • /
    • 2004
  • 본 연구에서는 최적화된 스커트 형상을 설계하기 위한 기초 자료를 얻기 위하여 스커트 의 확산각 및 길이 변화에 따른 노즐의 공력하중 특성을 고속 풍동시험을 통하여 조사하였다. 적절한 스커트를 사용하면 없을 때에 비해 김발의 구동력을 1/10 수준까지도 줄일 수 있었으며 시험 결과는 추후 스커트 형상 설계 데이터베이스로 활용하기 위해 정규화 하였다.

3D 프린팅을 이용한 PLA+ 소재의 다양한 출력 조건에 따른 인장강도에 대한 연구 (A Study on Tensile Strength According to Various Output Conditions of PLA+ Materials Using 3D Printing)

  • 나두현;김성기
    • 소성∙가공
    • /
    • 제31권2호
    • /
    • pp.89-95
    • /
    • 2022
  • 3D printing products manufactured by material extrusion are used in many industrial fields recently. However, these products are difficult to use in the field due to their low tensile strengths. In order to solve this problem, research on improving the tensile strength of the output using a 3D printer has been continuously conducted. In this study, we performed a tensile test using Universal Testing Machine according to infill pattern, nozzle temperature, bed temperature, and printing speed conditions. Results revealed that tensile specimen of concentric shape had the highest tensile strength in infill pattern condition and that the tensile strength increased linearly with increasing nozzle and bed temperatures. However, the tensile strength decreased with increasing printing speed. Consequently, we confirmed that tensile strength could be increased and decreased depending on output conditions of 3D printing.

트롤어선의 예망속도 향상을 위한 추진기 구조개선 (Redesigning nozzle propeller of trawl vessel for improving towing speed)

  • 홍진근;강일권;김형석;정성재
    • 수산해양기술연구
    • /
    • 제46권4호
    • /
    • pp.476-486
    • /
    • 2010
  • Fishing efficiency of a trawl vessel can be enhanced by increasing the swept area per unit time, which can be attained either by increasing the mouth size of the net, or by increasing the towing speed. To improve fishing and fuel efficiency of trawl vessels targeting fishes of greater mobility, in which the towing speed is more critical in determining fishing efficiency, we conducted a series of model tests to evaluate the performance of the newly-designed nozzle propeller before installing it in a trawl vessel to verify its towing speed and fuel efficiency in the sea. By conducting further model tests in the experimental basin, we redesigned the propeller of stern trawler to improve the resistance and propulsion performance. Through actual fishing operations, we evaluated the improvement in fuel and fishing efficiency by installing the new nozzle propeller. The trawling speed increased by 0.6kts at the same engine power (RPM), while the engine margin increased by more than 20%. The increased towing speed by installing the redesigned propeller is expected to enhance fishing performance through increasing the number of hauling- and casting operations per unit times, while shortening the towing duration. Analysis of the Catch-Per-Unit-Effort (CPUE) data indicated that the mean CPUE of trawl fishery increased from 3.04kg/m in year 2007 to 6.15kg/m in year 2008, confirming enhanced fishing efficiency by adopting the redesigned propeller.

고속 평면제트와 쐐기에 의한 충돌 순음의 주파수특성 (Frequence Characteristics of Impinging Tones by High-Speed Plane Jets and Wedges)

  • 권영필;장욱;이근희;김욱
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.1210-1216
    • /
    • 2001
  • The impinging tones by high-speed plane jets are investigated for the characteristics of edgetone generation based on experimental observations. Experiment has been performed for edgetones with a slit nozzle and a wedge system. The jet in the experiment is varied from low to high subsonic speed to obtain the effect of the speed on the frequency characteristics of impinging tones. The experimental data obtained previously for edgetones and platetones by various nozzles are compared with the present edgetone data for the condition of tone generation, the frequency ranges and the effective source point. It is found that the jet speed has no fundamental influence on the impinging tone characteristics. Regardless of the jet speed, the effective source point is about a quarter wavelength downstream from the edge tip. With increase in jet speed, the influence of the nozzle configuration is decreased and the operating frequencies show good coincidencies by normalized parameters based on the slit thickness.

  • PDF

공기부상방식 웨이퍼 이송시스템의 추진 노즐 크기에 따른 추진력계수에 관한 연구 (Propulsion Force Coefficient of Injection Nozzle Size on Air Levitation Type Wafer Transfer System)

  • 문민호;조상준;황영규
    • 반도체디스플레이기술학회지
    • /
    • 제4권1호
    • /
    • pp.35-41
    • /
    • 2005
  • An air levitation type wafer transfer system is composed of control and transfer track. Wafer transfer speed is mainly affected by air velocity of propulsion nozzle. In this study, the propulsion force coefficient was evaluated experimentally for the nozzle with 0.5mm, 0.8mm, and 1.0mm diameter. As a result, the propulsion force was largest in the smallest size of nozzle at same air velocity. The propulsion force coefficient of nozzle increases with reducing diameter of nozzle. This increment of propulsion force coefficient was enlarged remarkably at the 0.5mm diameter of nozzle.

  • PDF

발사체 충격 방식을 사용한 초음속 액체 제트의 과도 분무 형상에 관한 연구 (Transient Spray Structures of Supersonic Liquid Jet Injected by Projectile Impact Systems)

  • 신정환;이인철;김희동;구자예
    • 한국분무공학회지
    • /
    • 제17권2호
    • /
    • pp.86-93
    • /
    • 2012
  • The effects of projectile impact system on the transient spray characteristic which is supersonic liquid tip velocity were studied by experimentally. Supersonic liquid jets were generated by impact of a high speed projectile driven by a Two-stage light gas gun. A high speed camera and schlieren optical system were used to capture the spray structures of the supersonic liquid jets. In a case of nozzle assembly Type-A, expansion gases accelerate a projectile which has a mass of 6 grams from 250 m/s at the exit of the launch tube. Accelerated projectile collides with the liquid storage part, then supersonic liquid jets are injected with instantaneous spray tip velocity from 617.78 m/s to 982.54 m/s with various nozzle L/d. However, In a case of nozzle assembly Type-B which has a heavier projectile (60 grams) and lower impact velocity (182 m/s), an impact pressure was decreased. Thus the liquid jet injected at 210 m/s of the maximum velocity did not penetrate a shock wave and fast break-up was occurred. Pulsed injection of liquid column generated second shock wave and multiple shock wave.