• Title/Summary/Keyword: Nox4

Search Result 724, Processing Time 0.025 seconds

Performance Evaluation of Low NOx Pulverized Coal Burner Applied in Coal Fired Boiler Refurbishment Project (석탄연소보일러 개조공사에 적용된 저NOx 미분탄 버너의 성능 평가)

  • Kim, Sang-Hyeun;Song, Si-Hong;Kim, Hyuk-Je;Kim, Hyeok-Pil
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.4
    • /
    • pp.22-26
    • /
    • 2006
  • To meet the environmental requirements, Doosan Heavy Industries & Construction Co., Ltd. (Doosan) had developed low NOx pulverized coal burner and it was applied to boiler retrofit project, 130 ton/hr coal fired cogeneration boiler, in 2003. NOx emissionand unburned carbon (UBC) in fly ash were measured during the commissioning tests. In this paper, the operation results of low NOx pulverized coal burner installed in 130 ton/hr coal fired boiler are presented. Burners emitted 160 ppm (@6 % $O_2$ basis) NOx and 3 % UBC with Chinacoal containing 0.86 % fuel nitrogen. And also it was shown that NOx emission rate of low NOx pulverized coal burner is linearly increased with fuel-nitrogen fraction of coal.

  • PDF

A Study on the Flame Structure and NOx Distribution In Coaxial Diffusion Combustor (동축확산연소기 화염구조와 NOx 분포에 관한 연구)

  • Kim, K.S.;Lee, W.S.;Kang, I.G.;Lee, D.H.
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.2
    • /
    • pp.35-41
    • /
    • 1999
  • The purpose of this study is to establish the flame structure and NOx emission characteristics of the swirl flow coaxial diffusion combustion in the model gas turbine combustor. The mean temperature, ion currents and NOx emission measurement technique showed the effect of equivalence ratio into flame length and flame stability. As a result of this study, NOx emission was increased by increasing the equivalence ratio, and the peak value of the NOx was appeared near the flame front.

  • PDF

Studies on Coal Combustion Characteristics and NOx Emission and Reduction in the Drop Tube Furnace (DTF를 이용한 석탄연소특성과 NOx 발생 및 저감에 관한 연구)

  • Han, Woong;Park, Chu-Sik;Choi, Sang-Il;Lee, Ik-Hyung;Yang, Hyun-Soo
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.2
    • /
    • pp.85-95
    • /
    • 1999
  • The objective of this study was to obtain basic data for the staged combustion toward the NOx reduction in coal combustion. Combustion and NOx emission/reduction were investigated by using DTF. NOx emission was decreased with decreasing air ratio and with increasing volatile content in coal. In particular, effective NOx reduction was achieved at high temperature at the onset of combustion with fuel rich condition.

  • PDF

SNCR/SCR Combined 시스템을 이용한 DeNOx 연구

  • 최상기;남창모;박상원;최성우
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2001.11a
    • /
    • pp.26-27
    • /
    • 2001
  • SNCR 기술을 이용한 NOx 저감은 반응온도 850~$1100^{\circ}C$에서 효과적이였으며, 몰비($NH_3$/NOx), $O_2$ 농도에 상당히 영향을 받고 있었다. 최적온도 $950^{\circ}C$, 몰비 1.5에서 약65%의 NOx 제거효율을 얻을 수 있으며, 온도구배가 없고 $O_2$ 농도가 2~4%로 낮아질 경우 더 높은 제거효율이 기대된다. SCR 기술에 의한 NOx 저감을 위해 $V_3$$O_{5}$/-$WO_3$/$TiO_2$ 상용촉매를 사용하였으며, 반응 온도는 200~$500^{\circ}C$ 범위로 확인되었으며, 약 84%의 NOx 제거효율이 몰비 1.5 에서 얻어졌다. $O_2$ 농도가 21%로 높아짐에 따라 상당히 효율이 떨어짐이 밝혀졌다. SNCR/SCR combined 시스템은 몰비=2.0, $T_{SNCR}$/=$850^{\circ}C$, $T_{SCR}$ /=$350^{\circ}C$ 반응조건에서는 약 93%의 NOx 저감효율을 보여주어 SNCR, SCR 단위기술보다 더 효과적이었다.

  • PDF

A Study on the Effects of NOx Reduction for the Tandem System (Tandem 시스템의 NOx 저감 효과에 관한 연구)

  • Nam Jeong-Gil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.645-653
    • /
    • 2005
  • The effects of a WI(Water Injection) at the intake Pipe and an urea injection at the exhaust pipe for a 4-cylinder DI(Direct Injection) diesel engine were investigated experimentally The water quantity was controlled by temperature of intake manifold and MAF(Manifold Air Flow). In addition, the urea quantify was controlled by NOx quantify and MAF. Effects of WI system, urea-SCR system and tandem system were investigated for with and without EGR(Exhaust Gas Recirculation). As the results. the SUF(Stoichiometric Urea Flow) and NOx map were obtained. In addition, NOx results can be visualized with engine speed and engine load. It was concluded. therefore, that the NOx reduction effects of the tandem system without the EGR were more than those with the EGR base engine.

Emission Characteristics of NOx and CO with Heat Loss Under High Efficiency Combustion Conditions of $CH_4$/Air Air Premixed Flame ($CH_4$/Air 예혼합화염의 고효율 연소조건에서 열손실에 따른 NOx 및 CO 배출특성)

  • Hyun, Seung-Ho;Hwang, Cheol-Hong;Lee, Chang-Eon;Kim, Se-Won;Jang, Gi-Hyun
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • Emission characteristics of NOx and CO with heat loss under high efficiency combustion conditions of $CH_4$/Air prmixed flame were examined numerically using detailed-kinetic chemistry. The one-dimensional combustor length was fixed 5cm, and the equivalence ratio was varied from 0.75 to 0.95. To consider the effects of heat loss on NOx and CO formation, the radiative heat loss rate and combined heat loss rate of conductive and convective heat transfer are included. The following conclusions were drawn. In order to reduce the NOx and CO emission level simultaneously, the temperature of product gases must be reduced under 1,800K as soon as possible but kept over 1,300K during the residence time which is needed to converge CO to $CO_2$.

  • PDF

The Effect of Residence Time and Heat Loss on NOx Formation Characteristics in the Downstream Region of CH4/Air Premixed Flame (CH4/Air 예혼합화염의 하류영역에서 체류시간 및 열손실에 의한 NOx의 생성특성)

  • Hwang, Cheol-Hong;Hyun, Sung-Ho;Tak, Young-Jo;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.99-108
    • /
    • 2007
  • In this study, the NOx formation characteristics of one-dimensional $CH_4$/Air premixed flame using detailed-kinetic chemistry are examined numerically. The combustor length and the amount of heat loss are varied to investigate the effect of residence time and heat loss on the NOx formation in a post-flame region. In the flame region, NO is mainly produced by the Prompt NO mechanism including $N_2$O-intermediate NO mechanism over all equivalence ratios. However, thermal NO mechanism is more important than Prompt NO mechanism in the post-flame region. In the case of adiabatic condition, the increase of combustor length causes the remarkable increase of NO emission at the exit due to the increase of residence time. On the other hand, NO reaches the equilibrium state in the vicinity of flame region, considering radiation and conduction heat losses. Furthermore the NO, in the case of $\phi$=1.2, is gradually reduced in the downstream region as the heat loss is increased. From these results, it can be concluded that the controls of residence time and heat loss in a combustor should be recognized as an important NOx reduction technology.

NADPH Oxidases Are Required for Appressorium-Mediated Penetration in Colletotrichum scovillei-Pepper Fruit Pathosystem

  • Fu, Teng;Lee, Noh-Hyun;Shin, Jong-Hwan;Kim, Kyoung Su
    • The Plant Pathology Journal
    • /
    • v.38 no.4
    • /
    • pp.345-354
    • /
    • 2022
  • NADPH oxidase (Nox) complexes are known to play essential roles in differentiation and proliferation of many filamentous fungi. However, the functions of Noxs have not been elucidated in Colletotrichum species. Therefore, we set out to characterize the roles of Nox enzymes and their regulators in Colletotrichum scovillei, which causes serious anthracnose disease on pepper fruits in temperate and subtropical and temperate region. In this study, we generated targeted deletion mutants for CsNox1, CsNox2, CsNoxR, and CsNoxD via homologous recombination. All deletion mutants were normal in mycelial growth, conidiation, conidial germination, and appressorium formation, suggesting that CsNox1, CsNox2, CsNoxR, and CsNoxD are not involved in those developmental processes. Notably, conidia of 𝜟Csnox2 and 𝜟Csnoxr, other than 𝜟Csnox1 and 𝜟Csnoxd, failed to cause anthracnose on intact pepper fruits. However, they still caused normal disease on wounded pepper fruits, suggesting that Csnox2 and CsnoxR are essential for penetration-related morphogenesis in C. scovillei. Further observation proved that 𝜟Csnox2 and 𝜟Csnoxr were unable to form penetration peg, while they fully developed appressoria, revealing that defect of anthracnose development by 𝜟Csnox2 and 𝜟Csnoxr resulted from failure in penetration peg formation. Our results suggest that CsNox2 and CsNoxR are critical for appressorium-mediated penetration in C. scovillei-pepper fruit pathosystem, which provides insight into understanding roles of Nox genes in anthracnose disease development.

Flame Structure and NOx Emission Characteristics in Laminar Partially Premixed $CH_4$/Air Flames;Effect of Premixing Degree (메탄/공기 층류 부분 예혼합화염의 화염구조와 NOx 배출특성;예혼합 인자의 영향)

  • Oh, Jeong-Seog;Jeong, Yong-Ki;Jeon, Chung-Hwan;Chang, Young-June
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.75-81
    • /
    • 2003
  • In this paper, the study of effects of flow variables on flame structure and NOx emission concentration was performed in co-axial laminar partially premixed methane/air flames. the objectives are to reveal its effect as parameters were varied and to understand the correlation between flame structure and NOx emission characteristics in the reaction zone. equivalence ratio(${\Phi}$), fuel split degree(${\sigma}$), and mixing distance(x/D) were defined as a premixing degree and varied within $1.36{\sim}3.17$(equivalence ratio), $50{\sim}100$(fuel split degree), and $5{\sim}20$(mixing distance). the image of $OH{\ast}$ and $CH{\ast}$, and NOx concentration were obtained with an ICCD camera and a NOx analyzer. additionally the maximum intensity location of $OH{\ast}$ chemiluminescence and $CH{\ast}$ chemiluminescence were measured to compare each flame structures. In conclusion flame structure and NOx emission characteristics were changed from diffused to premixed flame when mixing degree was on the increase. the main effect on flame structure and NOx production was at first equivalence ratio(${\Phi}$), and next fuel split degree(${\sigma}$), and finally mixing distance(x/D).

  • PDF

The Effect of Biomass Reburning with Rice Husk on NOx Reduction in Light Oil Flame (경유 화염에서 왕겨를 이용한 바이오매스 재연소의 NOx 저감 효과)

  • Kim, Se-Won;Shin, Myeung-Chul;Lee, Chang-Yeop
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.4
    • /
    • pp.17-24
    • /
    • 2009
  • Reburning is one of the most useful technologies for reducing nitric oxide in economically and technically. The reburning process was demonstrated as an effective NOx reduction method through injection of a secondary hydrocarbon fuel. An experimental study has been conducted to evaluate the effect of biomass reburning on NOx and CO formation in a light oil flamed combustion furnace. Reburning tests on NOx reduction of air-carried rice husk powder as the reburn fuel and light oil as the main fuel were performed in flames stabilized by a co-flow swirl and fuel staged burner, which was mounted at the front of the furnace. The results included flue gas emissions and temperature distribution in the furnace for several kinds of experimental conditions. It was observed clearly that NOx concentrations in the exhaust have considerably decreased due to effect of biomass reburning. The maximum NOx reduction rate was 42% when the reburn fuel fraction was 0.18. The CO emissions were kept under 42 ppmv in all experimental tests. And this paper makes clear that in order to decrease NOx concentration in the exhaust when the biomass reburning system is adapted, the control of some factors such as reburn fuel fraction and reburn zone fraction is very important.

  • PDF