DOI QR코드

DOI QR Code

NADPH Oxidases Are Required for Appressorium-Mediated Penetration in Colletotrichum scovillei-Pepper Fruit Pathosystem

  • Fu, Teng (Division of Bio-Resource Sciences, BioHerb Research Institute, and Interdisciplinary Program in Smart Agriculture, Kangwon National University) ;
  • Lee, Noh-Hyun (Division of Bio-Resource Sciences, BioHerb Research Institute, and Interdisciplinary Program in Smart Agriculture, Kangwon National University) ;
  • Shin, Jong-Hwan (Division of Bio-Resource Sciences, BioHerb Research Institute, and Interdisciplinary Program in Smart Agriculture, Kangwon National University) ;
  • Kim, Kyoung Su (Division of Bio-Resource Sciences, BioHerb Research Institute, and Interdisciplinary Program in Smart Agriculture, Kangwon National University)
  • Received : 2022.05.06
  • Accepted : 2022.06.13
  • Published : 2022.08.01

Abstract

NADPH oxidase (Nox) complexes are known to play essential roles in differentiation and proliferation of many filamentous fungi. However, the functions of Noxs have not been elucidated in Colletotrichum species. Therefore, we set out to characterize the roles of Nox enzymes and their regulators in Colletotrichum scovillei, which causes serious anthracnose disease on pepper fruits in temperate and subtropical and temperate region. In this study, we generated targeted deletion mutants for CsNox1, CsNox2, CsNoxR, and CsNoxD via homologous recombination. All deletion mutants were normal in mycelial growth, conidiation, conidial germination, and appressorium formation, suggesting that CsNox1, CsNox2, CsNoxR, and CsNoxD are not involved in those developmental processes. Notably, conidia of 𝜟Csnox2 and 𝜟Csnoxr, other than 𝜟Csnox1 and 𝜟Csnoxd, failed to cause anthracnose on intact pepper fruits. However, they still caused normal disease on wounded pepper fruits, suggesting that Csnox2 and CsnoxR are essential for penetration-related morphogenesis in C. scovillei. Further observation proved that 𝜟Csnox2 and 𝜟Csnoxr were unable to form penetration peg, while they fully developed appressoria, revealing that defect of anthracnose development by 𝜟Csnox2 and 𝜟Csnoxr resulted from failure in penetration peg formation. Our results suggest that CsNox2 and CsNoxR are critical for appressorium-mediated penetration in C. scovillei-pepper fruit pathosystem, which provides insight into understanding roles of Nox genes in anthracnose disease development.

Keywords

Acknowledgement

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea grant (NRF-2020R1A2C100550700) funded by the Ministry of Education, Science and Technology, and by a grant (918019043HD020) from the Strategic Initiative for Microbiomes in Agriculture and Food, Ministry of Agriculture, Food and Rural Affairs, Republic of Korea.

References

  1. Bedard, K. and Krause, K.-H. 2007. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 87:245-313. https://doi.org/10.1152/physrev.00044.2005
  2. Cano-Dominguez, N., Alvarez-Delfin, K., Hansberg, W. and Aguirre, J. 2008. NADPH oxidases NOX-1 and NOX-2 require the regulatory subunit NOR-1 to control cell differentiation and growth in Neurospora crassa. Eukaryot. Cell 7:1352-1361. https://doi.org/10.1128/EC.00137-08
  3. Chi, M. H., Park, S. Y. and Lee, Y. H. 2009. A quick and safe method for fungal DNA extraction. Plant Pathol. J. 25:108-111. https://doi.org/10.5423/PPJ.2009.25.1.108
  4. Choi, J., Kim, Y., Kim, S., Park, J. and Lee, Y.-H. 2009. MoCRZ1, a gene encoding a calcineurin-responsive transcription factor, regulates fungal growth and pathogenicity of Magnaporthe oryzae. Fungal Genet. Biol. 46:243-254. https://doi.org/10.1016/j.fgb.2008.11.010
  5. Dagdas, Y. F., Yoshino, K., Dagdas, G., Ryder, L. S., Bielska, E., Steinberg, G. and Talbot, N. J. 2012. Septin-mediated plant cell invasion by the rice blast fungus, Magnaporthe oryzae. Science 336:1590-1595. https://doi.org/10.1126/science.1222934
  6. Dieguez-Uribeondo, J., Forster, H. and Adaskaveg, J. E. 2003. Digital image analysis of internal light spots of appressoria of Colletotrichum acutatum. Phytopathology 93:923-930. https://doi.org/10.1094/PHYTO.2003.93.8.923
  7. Fu, T., Han, J.-H., Shin, J.-H., Song, H., Ko, J., Lee, Y.-H., Kim, K.-T. and Kim, K. S. 2021. Homeobox transcription factors are required for fungal development and the suppression of host defense mechanisms in the Colletotrichum scovilleipepper pathosystem. mBio 12:e0162021. https://doi.org/10.1128/mBio.01620-21
  8. Fu, T., Park, G.-C., Han, J. H., Shin, J.-H., Park, H.-H. and Kim, K. S. 2019. MoRBP9 encoding a Ran-binding protein microtubule-organizing center is required for asexual reproduction and infection in the rice blast pathogen Magnaporthe oryzae. Plant Pathol. J. 35:564-574. https://doi.org/10.5423/PPJ.OA.07.2019.0204
  9. Fu, T., Shin, J.-H., Lee, N.-H., Lee, K. H. and Kim, K. S. 2022. Mitogen-activated protein kinase CsPMK1 is essential for pepper fruit anthracnose by Colletotrichum scovillei. Front. Microbiol. 13:770119. https://doi.org/10.3389/fmicb.2022.770119
  10. Galhano, R., Illana, A., Ryder, L. S., Rodriguez-Romero, J., Demuez, M., Badaruddin, M., Martinez-Rocha, A. L., Soanes, D. M., Studholme, D. J., Talbot, N. J. and Sesma, A. 2017. Tpc1 is an important Zn(II)2Cys6 transcriptional regulator required for polarized growth and virulence in the rice blast fungus. PLoS Pathog. 13:e1006516. https://doi.org/10.1371/journal.ppat.1006516
  11. Giacomin, R. M., Ruas, C. D. F., Moreira, A. F. P., Guidone, G. H. M., Baba, V. Y., Rodrigues, R. and Goncalves, L. S. A. 2020. Inheritance of anthracnose resistance (Colletotrichum scovillei) in ripe and unripe Capsicum annuum fruits. J. Phytopathol. 168:184-192. https://doi.org/10.1111/jph.12880
  12. Han, J.-H., Chon, J.-K., Ahn, J.-H., Choi, I.-Y., Lee, Y.-H. and Kim, K. S. 2016. Whole genome sequence and genome annotation of Colletotrichum acutatum, causal agent of anthracnose in pepper plants in South Korea. Genom. Data 8:45-46. https://doi.org/10.1016/j.gdata.2016.03.007
  13. Han, J.-H., Shin, J.-H., Lee, Y.-H. and Kim, K. S. 2018. Distinct roles of the YPEL gene family in development and pathogenicity in the ascomycete fungus Magnaporthe oryzae. Sci. Rep. 8:14461. https://doi.org/10.1038/s41598-018-32633-6
  14. Kayano, Y., Tanaka, A., Akano, F., Scott, B. and Takemoto, D. 2013. Differential roles of NADPH oxidases and associated regulators in polarized growth, conidiation and hyphal fusion in the symbiotic fungus Epichloe festucae. Fungal Genet. Biol. 56:87-97. https://doi.org/10.1016/j.fgb.2013.05.001
  15. Kim, S., Park, M., Yeom, S.-I., Kim, Y.-M., Lee, J. M., Lee, H.-A., Seo, E., Choi, J., Cheong, K., Kim, K.-T., Jung, K., Lee, G.-W., Oh, S.-K., Bae, C., Kim, S.-B., Lee, H.-Y., Kim, S.-Y., Kim, M.-S., Kang, B.-C., Jo, Y. D., Yang, H.-B., Jeong, H.-J., Kang, W.-H., Kwon, J.-K., Shin, C., Lim, J. Y., Park, J. H., Huh, J. H., Kim, J.-S., Kim, B.-D., Cohen, O., Paran, I., Suh, M. C., Lee, S. B., Kim, Y.-K., Shin, Y., Noh, S.-J., Park, J., Seo, Y. S., Kwon, S.-Y., Kim, H. A., Park, J. M., Kim, H.-J., Choi, S.-B., Bosland, P. W., Reeves, G., Jo, S.-H., Lee, B.-W., Cho, H.-T., Choi, H.-S., Lee, M.-S., Yu, Y., Choi, Y. D., Park, B.-S., van Deynze, A., Ashrafi, H., Hill, T., Kim, W. T., Pai, H.-S., Ahn, H. K., Yeam, I., Giovannoni, J. J., Rose, J. K. C., Sorensen, I., Lee, S.-J., Kim, R. W., Choi, I.-Y., Choi, B.-S., Lim, J.-S., Lee, Y.-H. and Choi, D. 2014. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat. Genet. 46:270-278. https://doi.org/10.1038/ng.2877
  16. Kou, Y., Qiu, J. and Tao Z. 2019. Every coin has two sides: reactive oxygen species during Rice-Magnaporthe oryzae interaction. Int. J. Mol. Sci. 20:1191. https://doi.org/10.3390/ijms20051191
  17. Lambeth, J. D. 2004. NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4:181-189. https://doi.org/10.1038/nri1312
  18. Lara-Ortiz, T., Riveros-Rosas, H. and Aguirre, J. 2003. Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans. Mol. Microbiol. 50:1241-1255. https://doi.org/10.1046/j.1365-2958.2003.03800.x
  19. Lee, N.-H., Fu, T., Shin, J.-H., Song, Y.-W., Jang, D.-C. and Kim, K. S. 2021. The small GTPase CsRAC1 is important for fungal development and pepper anthracnose in Colletotrichum scovillei. Plant Pathol. J. 37:607-618. https://doi.org/10.5423/PPJ.OA.09.2021.0140
  20. Liao, C.-Y., Chen, M.-Y., Chen, Y.-K., Kuo, K.-C., Chung, K.-R. and Lee, M.-H. 2012. Formation of highly branched hyphae by Colletotrichum acutatum within the fruit cuticles of Capsicum spp. Plant Pathol. 61:262-270. https://doi.org/10.1111/j.1365-3059.2011.02523.x
  21. Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
  22. Oo, M. M. and Oh, S.-K. 2016. Chilli anthracnose (Colletotrichum spp.) disease and its management approach. Korean J. Agric. Sci. 43:153-162. https://doi.org/10.7744/KJOAS.20160018
  23. Pariona, N., Mtz-Enriquez, A. I., Sanchez-Rangel, D., Carrion, G., Paraguay-Delgado, F. and Rosas-Saito, G. 2019. Green-synthesized copper nanoparticles as a potential antifungal against plant pathogens. RSC Adv. 9:18835-18843. https://doi.org/10.1039/c9ra03110c
  24. Park, S.-Y., Choi, J., Lim, S.-E., Lee, G.-W., Park, J., Kim, Y., Kong, S., Kim, S. R., Rho, H.-S., Jeon, J., Chi, M.-H., Kim, S., Khang, C. H., Kang, S. and Lee, Y.-H. 2013. Global expression profiling of transcription factor genes provides new insights into pathogenicity and stress responses in the rice blast fungus. PLoS Pathog. 9:e1003350. https://doi.org/10.1371/journal.ppat.1003350
  25. Rada, B. and Leto, T. L. 2008. Oxidative innate immune defenses by Nox/Duox family NADPH oxidases. Contrib. Microbiol. 15:164-187. https://doi.org/10.1159/000136357
  26. Rastogi, R., Geng, X., Li, F. and Ding, Y. 2017. NOX activation by subunit interaction and underlying mechanisms in disease. Front. Cell. Neurosci. 10:301.
  27. Ryder, L. S., Dagdas, Y. F., Mentlak, T. A., Kershaw, M. J., Thornton, C. R., Schuster, M., Chen, J., Wang, Z. and Talbot, N. J. 2013. NADPH oxidases regulate septin-mediated cytoskeletal remodeling during plant infection by the rice blast fungus. Proc. Natl. Acad. Sci. U. S. A. 110:3179-3184. https://doi.org/10.1073/pnas.1217470110
  28. Sahoo, B. M., Banik, B. K., Borah, P. and Jain, A. 2022. Reactive oxygen species (ROS): key components in cancer therapies. Anticancer Agents Med. Chem. 22:215-222. https://doi.org/10.2174/1871520621666210608095512
  29. Saxena, A., Raghuwanshi, R., Gupta, V. K. and Singh, H. B. 2016. Chilli anthracnose: the epidemiology and management. Front. Microbiol. 7:1527. https://doi.org/10.3389/fmicb.2016.01527
  30. Schroeckh, V., Scherlach, K., Nutzmann, H.-W., Shelest, E., Schmidt-Heck, W., Schuemann, J., Martin, K., Hertweck, C. and Brakhage, A. A. 2009. Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc. Natl. Acad. Sci. U. S. A. 106:14558-14563. https://doi.org/10.1073/pnas.0901870106
  31. Scott, B. 2015. Conservation of fungal and animal nicotinamide adenine dinucleotide phosphate oxidase complexes. Mol. Microbiol. 95:910-913. https://doi.org/10.1111/mmi.12946
  32. Segmuller, N., Kokkelink, L., Giesbert, S., Odinius, D., van Kan, J. and Tudzynski, P. 2008. NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea. Mol. Plant-Microbe Interact. 21:808-819. https://doi.org/10.1094/mpmi-21-6-0808
  33. Shin, J.-H., Fu, T. and Kim, K. S. 2021. Pex7 selectively imports PTS2 target proteins to peroxisomes and is required for anthracnose disease development in Colletotrichum scovillei. Fungal Genet. Biol. 157:103636. https://doi.org/10.1016/j.fgb.2021.103636
  34. Shin, J.-H., Han, J.-H., Park, H.-H., Fu, T. and Kim, K. S. 2019. Optimization of polyethylene glycol-mediated transformation of the pepper anthracnose pathogen Colletotrichum scovillei to develop an applied genomics approach. Plant Pathol. J. 35:575-584. https://doi.org/10.5423/PPJ.OA.06.2019.0171
  35. Shin, J.-H., Kim, H.-Y., Fu, T., Lee, K.-H. and Kim, K. S. 2022. CsPOM1, a DYRK family kinase, plays diverse roles in fungal development, virulence, and stress tolerance in the anthracnose pathogen Colletotrichum scovillei. Front. Cell. Infect. Microbiol. 12:861915. https://doi.org/10.3389/fcimb.2022.861915
  36. Siegmund, U., Marschall, R. and Tudzynski, P. 2015. BcNoxD, a putative ER protein, is a new component of the NADPH oxidase complex in Botrytis cinerea. Mol. Microbiol. 95:988-1005. https://doi.org/10.1111/mmi.12869
  37. Srinivasan, M., Vijayalakshmi Kothandaraman, S., Vaikuntavasan, P. and Rethinasamy, V. 2014. Development of conventional and real-time PCR protocols for specific and sensitive detection of Colletotrichum capsici in chilli (Capsicum annuum L.). Phytoparasitica 42:437-444. https://doi.org/10.1007/s12600-013-0380-3
  38. Sumimoto, H. 2008. Structure, regulation and evolution of Nox- family NADPH oxidases that produce reactive oxygen species. FEBS J. 275:3249-3277. https://doi.org/10.1111/j.1742-4658.2008.06488.x
  39. Takemoto, D., Tanaka, A. and Scott, B. 2007. NADPH oxidases in fungi: diverse roles of reactive oxygen species in fungal cellular differentiation. Fungal Genet. Biol. 44:1065-1076. https://doi.org/10.1016/j.fgb.2007.04.011
  40. Torres, M. A. and Dangl, J. L. 2005. Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr. Opin. Plant. Biol. 8:397-403. https://doi.org/10.1016/j.pbi.2005.05.014
  41. Wang, P., Li, B., Pan, Y.-T., Zhang, Y.-Z., Li, D.-W. and Huang, L. 2020. Calcineurin-responsive transcription factor CgCrzA is required for cell wall integrity and infection-related morphogenesis in Colletotrichum gloeosporioides. Plant Pathol. J. 36:385-397. https://doi.org/10.5423/PPJ.OA.04.2020.0071
  42. Wharton, P. S. and Schilder, A. C. 2008. Novel infection strategies of Colletotrichum acutatum on ripe blueberry fruit. Plant Pathol. 57:122-134. https://doi.org/10.1111/j.1365-3059.2007.01698.x
  43. Yang, S. L. and Chung, K.-R. 2012. The NADPH oxidase-mediated production of hydrogen peroxide (H2O2) and resistance to oxidative stress in the necrotrophic pathogen Alternaria alternata of citrus. Mol. Plant Pathol. 13:900-914. https://doi.org/10.1111/j.1364-3703.2012.00799.x
  44. Yu, J.-H., Hamari, Z., Han, K.-H., Seo, J.-A., Reyes-Dominguez, Y. and Scazzocchio, C. 2004. Double-joint PCR: a PCRbased molecular tool for gene manipulations in filamentous fungi. Fungal Genet. Biol. 41:973-981. https://doi.org/10.1016/j.fgb.2004.08.001
  45. Zhao, Y.-L., Zhou, T.-T. and Guo, H.-S. 2016. Hyphopodium-specific VdNoxB/VdPls1-dependent ROS-Ca2+ signaling is required for plant infection by Verticillium dahliae. PLoS Pathog. 12:e1005793. https://doi.org/10.1371/journal.ppat.1005793
  46. Zhu, X., Sayari, M., Islam, M. R. and Daayf, F. 2021. NOXA is important for Verticillium dahliae's penetration ability and virulence. J. Fungi 7:814. https://doi.org/10.3390/jof7100814