NADPH Oxidases Are Required for Appressorium-Mediated Penetration in Colletotrichum scovillei-Pepper Fruit Pathosystem |
Fu, Teng
(Division of Bio-Resource Sciences, BioHerb Research Institute, and Interdisciplinary Program in Smart Agriculture, Kangwon National University)
Lee, Noh-Hyun (Division of Bio-Resource Sciences, BioHerb Research Institute, and Interdisciplinary Program in Smart Agriculture, Kangwon National University) Shin, Jong-Hwan (Division of Bio-Resource Sciences, BioHerb Research Institute, and Interdisciplinary Program in Smart Agriculture, Kangwon National University) Kim, Kyoung Su (Division of Bio-Resource Sciences, BioHerb Research Institute, and Interdisciplinary Program in Smart Agriculture, Kangwon National University) |
1 | Shin, J.-H., Han, J.-H., Park, H.-H., Fu, T. and Kim, K. S. 2019. Optimization of polyethylene glycol-mediated transformation of the pepper anthracnose pathogen Colletotrichum scovillei to develop an applied genomics approach. Plant Pathol. J. 35:575-584. DOI |
2 | Siegmund, U., Marschall, R. and Tudzynski, P. 2015. BcNoxD, a putative ER protein, is a new component of the NADPH oxidase complex in Botrytis cinerea. Mol. Microbiol. 95:988-1005. DOI |
3 | Liao, C.-Y., Chen, M.-Y., Chen, Y.-K., Kuo, K.-C., Chung, K.-R. and Lee, M.-H. 2012. Formation of highly branched hyphae by Colletotrichum acutatum within the fruit cuticles of Capsicum spp. Plant Pathol. 61:262-270. DOI |
4 | Pariona, N., Mtz-Enriquez, A. I., Sanchez-Rangel, D., Carrion, G., Paraguay-Delgado, F. and Rosas-Saito, G. 2019. Green-synthesized copper nanoparticles as a potential antifungal against plant pathogens. RSC Adv. 9:18835-18843. DOI |
5 | Yang, S. L. and Chung, K.-R. 2012. The NADPH oxidase-mediated production of hydrogen peroxide (H2O2) and resistance to oxidative stress in the necrotrophic pathogen Alternaria alternata of citrus. Mol. Plant Pathol. 13:900-914. DOI |
6 | Torres, M. A. and Dangl, J. L. 2005. Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr. Opin. Plant. Biol. 8:397-403. DOI |
7 | Wang, P., Li, B., Pan, Y.-T., Zhang, Y.-Z., Li, D.-W. and Huang, L. 2020. Calcineurin-responsive transcription factor CgCrzA is required for cell wall integrity and infection-related morphogenesis in Colletotrichum gloeosporioides. Plant Pathol. J. 36:385-397. DOI |
8 | Wharton, P. S. and Schilder, A. C. 2008. Novel infection strategies of Colletotrichum acutatum on ripe blueberry fruit. Plant Pathol. 57:122-134. DOI |
9 | Yu, J.-H., Hamari, Z., Han, K.-H., Seo, J.-A., Reyes-Dominguez, Y. and Scazzocchio, C. 2004. Double-joint PCR: a PCRbased molecular tool for gene manipulations in filamentous fungi. Fungal Genet. Biol. 41:973-981. DOI |
10 | Zhao, Y.-L., Zhou, T.-T. and Guo, H.-S. 2016. Hyphopodium-specific VdNoxB/VdPls1-dependent ROS-Ca2+ signaling is required for plant infection by Verticillium dahliae. PLoS Pathog. 12:e1005793. DOI |
11 | Fu, T., Shin, J.-H., Lee, N.-H., Lee, K. H. and Kim, K. S. 2022. Mitogen-activated protein kinase CsPMK1 is essential for pepper fruit anthracnose by Colletotrichum scovillei. Front. Microbiol. 13:770119. DOI |
12 | Zhu, X., Sayari, M., Islam, M. R. and Daayf, F. 2021. NOXA is important for Verticillium dahliae's penetration ability and virulence. J. Fungi 7:814. DOI |
13 | Galhano, R., Illana, A., Ryder, L. S., Rodriguez-Romero, J., Demuez, M., Badaruddin, M., Martinez-Rocha, A. L., Soanes, D. M., Studholme, D. J., Talbot, N. J. and Sesma, A. 2017. Tpc1 is an important Zn(II)2Cys6 transcriptional regulator required for polarized growth and virulence in the rice blast fungus. PLoS Pathog. 13:e1006516. DOI |
14 | Rastogi, R., Geng, X., Li, F. and Ding, Y. 2017. NOX activation by subunit interaction and underlying mechanisms in disease. Front. Cell. Neurosci. 10:301. |
15 | Segmuller, N., Kokkelink, L., Giesbert, S., Odinius, D., van Kan, J. and Tudzynski, P. 2008. NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea. Mol. Plant-Microbe Interact. 21:808-819. DOI |
16 | Takemoto, D., Tanaka, A. and Scott, B. 2007. NADPH oxidases in fungi: diverse roles of reactive oxygen species in fungal cellular differentiation. Fungal Genet. Biol. 44:1065-1076. DOI |
17 | Cano-Dominguez, N., Alvarez-Delfin, K., Hansberg, W. and Aguirre, J. 2008. NADPH oxidases NOX-1 and NOX-2 require the regulatory subunit NOR-1 to control cell differentiation and growth in Neurospora crassa. Eukaryot. Cell 7:1352-1361. DOI |
18 | Chi, M. H., Park, S. Y. and Lee, Y. H. 2009. A quick and safe method for fungal DNA extraction. Plant Pathol. J. 25:108-111. DOI |
19 | Dagdas, Y. F., Yoshino, K., Dagdas, G., Ryder, L. S., Bielska, E., Steinberg, G. and Talbot, N. J. 2012. Septin-mediated plant cell invasion by the rice blast fungus, Magnaporthe oryzae. Science 336:1590-1595. DOI |
20 | Fu, T., Park, G.-C., Han, J. H., Shin, J.-H., Park, H.-H. and Kim, K. S. 2019. MoRBP9 encoding a Ran-binding protein microtubule-organizing center is required for asexual reproduction and infection in the rice blast pathogen Magnaporthe oryzae. Plant Pathol. J. 35:564-574. DOI |
21 | Giacomin, R. M., Ruas, C. D. F., Moreira, A. F. P., Guidone, G. H. M., Baba, V. Y., Rodrigues, R. and Goncalves, L. S. A. 2020. Inheritance of anthracnose resistance (Colletotrichum scovillei) in ripe and unripe Capsicum annuum fruits. J. Phytopathol. 168:184-192. DOI |
22 | Saxena, A., Raghuwanshi, R., Gupta, V. K. and Singh, H. B. 2016. Chilli anthracnose: the epidemiology and management. Front. Microbiol. 7:1527. DOI |
23 | Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402-408. DOI |
24 | Han, J.-H., Chon, J.-K., Ahn, J.-H., Choi, I.-Y., Lee, Y.-H. and Kim, K. S. 2016. Whole genome sequence and genome annotation of Colletotrichum acutatum, causal agent of anthracnose in pepper plants in South Korea. Genom. Data 8:45-46. DOI |
25 | Kayano, Y., Tanaka, A., Akano, F., Scott, B. and Takemoto, D. 2013. Differential roles of NADPH oxidases and associated regulators in polarized growth, conidiation and hyphal fusion in the symbiotic fungus Epichloe festucae. Fungal Genet. Biol. 56:87-97. DOI |
26 | Bedard, K. and Krause, K.-H. 2007. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 87:245-313. DOI |
27 | Fu, T., Han, J.-H., Shin, J.-H., Song, H., Ko, J., Lee, Y.-H., Kim, K.-T. and Kim, K. S. 2021. Homeobox transcription factors are required for fungal development and the suppression of host defense mechanisms in the Colletotrichum scovilleipepper pathosystem. mBio 12:e0162021. DOI |
28 | Choi, J., Kim, Y., Kim, S., Park, J. and Lee, Y.-H. 2009. MoCRZ1, a gene encoding a calcineurin-responsive transcription factor, regulates fungal growth and pathogenicity of Magnaporthe oryzae. Fungal Genet. Biol. 46:243-254. DOI |
29 | Park, S.-Y., Choi, J., Lim, S.-E., Lee, G.-W., Park, J., Kim, Y., Kong, S., Kim, S. R., Rho, H.-S., Jeon, J., Chi, M.-H., Kim, S., Khang, C. H., Kang, S. and Lee, Y.-H. 2013. Global expression profiling of transcription factor genes provides new insights into pathogenicity and stress responses in the rice blast fungus. PLoS Pathog. 9:e1003350. DOI |
30 | Ryder, L. S., Dagdas, Y. F., Mentlak, T. A., Kershaw, M. J., Thornton, C. R., Schuster, M., Chen, J., Wang, Z. and Talbot, N. J. 2013. NADPH oxidases regulate septin-mediated cytoskeletal remodeling during plant infection by the rice blast fungus. Proc. Natl. Acad. Sci. U. S. A. 110:3179-3184. DOI |
31 | Schroeckh, V., Scherlach, K., Nutzmann, H.-W., Shelest, E., Schmidt-Heck, W., Schuemann, J., Martin, K., Hertweck, C. and Brakhage, A. A. 2009. Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc. Natl. Acad. Sci. U. S. A. 106:14558-14563. DOI |
32 | Shin, J.-H., Fu, T. and Kim, K. S. 2021. Pex7 selectively imports PTS2 target proteins to peroxisomes and is required for anthracnose disease development in Colletotrichum scovillei. Fungal Genet. Biol. 157:103636. DOI |
33 | Sahoo, B. M., Banik, B. K., Borah, P. and Jain, A. 2022. Reactive oxygen species (ROS): key components in cancer therapies. Anticancer Agents Med. Chem. 22:215-222. DOI |
34 | Kou, Y., Qiu, J. and Tao Z. 2019. Every coin has two sides: reactive oxygen species during Rice-Magnaporthe oryzae interaction. Int. J. Mol. Sci. 20:1191. DOI |
35 | Lee, N.-H., Fu, T., Shin, J.-H., Song, Y.-W., Jang, D.-C. and Kim, K. S. 2021. The small GTPase CsRAC1 is important for fungal development and pepper anthracnose in Colletotrichum scovillei. Plant Pathol. J. 37:607-618. DOI |
36 | Shin, J.-H., Kim, H.-Y., Fu, T., Lee, K.-H. and Kim, K. S. 2022. CsPOM1, a DYRK family kinase, plays diverse roles in fungal development, virulence, and stress tolerance in the anthracnose pathogen Colletotrichum scovillei. Front. Cell. Infect. Microbiol. 12:861915. DOI |
37 | Srinivasan, M., Vijayalakshmi Kothandaraman, S., Vaikuntavasan, P. and Rethinasamy, V. 2014. Development of conventional and real-time PCR protocols for specific and sensitive detection of Colletotrichum capsici in chilli (Capsicum annuum L.). Phytoparasitica 42:437-444. DOI |
38 | Sumimoto, H. 2008. Structure, regulation and evolution of Nox- family NADPH oxidases that produce reactive oxygen species. FEBS J. 275:3249-3277. DOI |
39 | Oo, M. M. and Oh, S.-K. 2016. Chilli anthracnose (Colletotrichum spp.) disease and its management approach. Korean J. Agric. Sci. 43:153-162. DOI |
40 | Rada, B. and Leto, T. L. 2008. Oxidative innate immune defenses by Nox/Duox family NADPH oxidases. Contrib. Microbiol. 15:164-187. DOI |
41 | Scott, B. 2015. Conservation of fungal and animal nicotinamide adenine dinucleotide phosphate oxidase complexes. Mol. Microbiol. 95:910-913. DOI |
42 | Han, J.-H., Shin, J.-H., Lee, Y.-H. and Kim, K. S. 2018. Distinct roles of the YPEL gene family in development and pathogenicity in the ascomycete fungus Magnaporthe oryzae. Sci. Rep. 8:14461. DOI |
43 | Dieguez-Uribeondo, J., Forster, H. and Adaskaveg, J. E. 2003. Digital image analysis of internal light spots of appressoria of Colletotrichum acutatum. Phytopathology 93:923-930. DOI |
44 | Kim, S., Park, M., Yeom, S.-I., Kim, Y.-M., Lee, J. M., Lee, H.-A., Seo, E., Choi, J., Cheong, K., Kim, K.-T., Jung, K., Lee, G.-W., Oh, S.-K., Bae, C., Kim, S.-B., Lee, H.-Y., Kim, S.-Y., Kim, M.-S., Kang, B.-C., Jo, Y. D., Yang, H.-B., Jeong, H.-J., Kang, W.-H., Kwon, J.-K., Shin, C., Lim, J. Y., Park, J. H., Huh, J. H., Kim, J.-S., Kim, B.-D., Cohen, O., Paran, I., Suh, M. C., Lee, S. B., Kim, Y.-K., Shin, Y., Noh, S.-J., Park, J., Seo, Y. S., Kwon, S.-Y., Kim, H. A., Park, J. M., Kim, H.-J., Choi, S.-B., Bosland, P. W., Reeves, G., Jo, S.-H., Lee, B.-W., Cho, H.-T., Choi, H.-S., Lee, M.-S., Yu, Y., Choi, Y. D., Park, B.-S., van Deynze, A., Ashrafi, H., Hill, T., Kim, W. T., Pai, H.-S., Ahn, H. K., Yeam, I., Giovannoni, J. J., Rose, J. K. C., Sorensen, I., Lee, S.-J., Kim, R. W., Choi, I.-Y., Choi, B.-S., Lim, J.-S., Lee, Y.-H. and Choi, D. 2014. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat. Genet. 46:270-278. DOI |
45 | Lambeth, J. D. 2004. NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4:181-189. DOI |
46 | Lara-Ortiz, T., Riveros-Rosas, H. and Aguirre, J. 2003. Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans. Mol. Microbiol. 50:1241-1255. DOI |