Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.05.2022.0066

NADPH Oxidases Are Required for Appressorium-Mediated Penetration in Colletotrichum scovillei-Pepper Fruit Pathosystem  

Fu, Teng (Division of Bio-Resource Sciences, BioHerb Research Institute, and Interdisciplinary Program in Smart Agriculture, Kangwon National University)
Lee, Noh-Hyun (Division of Bio-Resource Sciences, BioHerb Research Institute, and Interdisciplinary Program in Smart Agriculture, Kangwon National University)
Shin, Jong-Hwan (Division of Bio-Resource Sciences, BioHerb Research Institute, and Interdisciplinary Program in Smart Agriculture, Kangwon National University)
Kim, Kyoung Su (Division of Bio-Resource Sciences, BioHerb Research Institute, and Interdisciplinary Program in Smart Agriculture, Kangwon National University)
Publication Information
The Plant Pathology Journal / v.38, no.4, 2022 , pp. 345-354 More about this Journal
Abstract
NADPH oxidase (Nox) complexes are known to play essential roles in differentiation and proliferation of many filamentous fungi. However, the functions of Noxs have not been elucidated in Colletotrichum species. Therefore, we set out to characterize the roles of Nox enzymes and their regulators in Colletotrichum scovillei, which causes serious anthracnose disease on pepper fruits in temperate and subtropical and temperate region. In this study, we generated targeted deletion mutants for CsNox1, CsNox2, CsNoxR, and CsNoxD via homologous recombination. All deletion mutants were normal in mycelial growth, conidiation, conidial germination, and appressorium formation, suggesting that CsNox1, CsNox2, CsNoxR, and CsNoxD are not involved in those developmental processes. Notably, conidia of 𝜟Csnox2 and 𝜟Csnoxr, other than 𝜟Csnox1 and 𝜟Csnoxd, failed to cause anthracnose on intact pepper fruits. However, they still caused normal disease on wounded pepper fruits, suggesting that Csnox2 and CsnoxR are essential for penetration-related morphogenesis in C. scovillei. Further observation proved that 𝜟Csnox2 and 𝜟Csnoxr were unable to form penetration peg, while they fully developed appressoria, revealing that defect of anthracnose development by 𝜟Csnox2 and 𝜟Csnoxr resulted from failure in penetration peg formation. Our results suggest that CsNox2 and CsNoxR are critical for appressorium-mediated penetration in C. scovillei-pepper fruit pathosystem, which provides insight into understanding roles of Nox genes in anthracnose disease development.
Keywords
Colletotrichum scovillei; NADPH oxidase; pepper fruit anthracnose;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Shin, J.-H., Han, J.-H., Park, H.-H., Fu, T. and Kim, K. S. 2019. Optimization of polyethylene glycol-mediated transformation of the pepper anthracnose pathogen Colletotrichum scovillei to develop an applied genomics approach. Plant Pathol. J. 35:575-584.   DOI
2 Siegmund, U., Marschall, R. and Tudzynski, P. 2015. BcNoxD, a putative ER protein, is a new component of the NADPH oxidase complex in Botrytis cinerea. Mol. Microbiol. 95:988-1005.   DOI
3 Liao, C.-Y., Chen, M.-Y., Chen, Y.-K., Kuo, K.-C., Chung, K.-R. and Lee, M.-H. 2012. Formation of highly branched hyphae by Colletotrichum acutatum within the fruit cuticles of Capsicum spp. Plant Pathol. 61:262-270.   DOI
4 Pariona, N., Mtz-Enriquez, A. I., Sanchez-Rangel, D., Carrion, G., Paraguay-Delgado, F. and Rosas-Saito, G. 2019. Green-synthesized copper nanoparticles as a potential antifungal against plant pathogens. RSC Adv. 9:18835-18843.   DOI
5 Yang, S. L. and Chung, K.-R. 2012. The NADPH oxidase-mediated production of hydrogen peroxide (H2O2) and resistance to oxidative stress in the necrotrophic pathogen Alternaria alternata of citrus. Mol. Plant Pathol. 13:900-914.   DOI
6 Torres, M. A. and Dangl, J. L. 2005. Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr. Opin. Plant. Biol. 8:397-403.   DOI
7 Wang, P., Li, B., Pan, Y.-T., Zhang, Y.-Z., Li, D.-W. and Huang, L. 2020. Calcineurin-responsive transcription factor CgCrzA is required for cell wall integrity and infection-related morphogenesis in Colletotrichum gloeosporioides. Plant Pathol. J. 36:385-397.   DOI
8 Wharton, P. S. and Schilder, A. C. 2008. Novel infection strategies of Colletotrichum acutatum on ripe blueberry fruit. Plant Pathol. 57:122-134.   DOI
9 Yu, J.-H., Hamari, Z., Han, K.-H., Seo, J.-A., Reyes-Dominguez, Y. and Scazzocchio, C. 2004. Double-joint PCR: a PCRbased molecular tool for gene manipulations in filamentous fungi. Fungal Genet. Biol. 41:973-981.   DOI
10 Zhao, Y.-L., Zhou, T.-T. and Guo, H.-S. 2016. Hyphopodium-specific VdNoxB/VdPls1-dependent ROS-Ca2+ signaling is required for plant infection by Verticillium dahliae. PLoS Pathog. 12:e1005793.   DOI
11 Fu, T., Shin, J.-H., Lee, N.-H., Lee, K. H. and Kim, K. S. 2022. Mitogen-activated protein kinase CsPMK1 is essential for pepper fruit anthracnose by Colletotrichum scovillei. Front. Microbiol. 13:770119.   DOI
12 Zhu, X., Sayari, M., Islam, M. R. and Daayf, F. 2021. NOXA is important for Verticillium dahliae's penetration ability and virulence. J. Fungi 7:814.   DOI
13 Galhano, R., Illana, A., Ryder, L. S., Rodriguez-Romero, J., Demuez, M., Badaruddin, M., Martinez-Rocha, A. L., Soanes, D. M., Studholme, D. J., Talbot, N. J. and Sesma, A. 2017. Tpc1 is an important Zn(II)2Cys6 transcriptional regulator required for polarized growth and virulence in the rice blast fungus. PLoS Pathog. 13:e1006516.   DOI
14 Rastogi, R., Geng, X., Li, F. and Ding, Y. 2017. NOX activation by subunit interaction and underlying mechanisms in disease. Front. Cell. Neurosci. 10:301.
15 Segmuller, N., Kokkelink, L., Giesbert, S., Odinius, D., van Kan, J. and Tudzynski, P. 2008. NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea. Mol. Plant-Microbe Interact. 21:808-819.   DOI
16 Takemoto, D., Tanaka, A. and Scott, B. 2007. NADPH oxidases in fungi: diverse roles of reactive oxygen species in fungal cellular differentiation. Fungal Genet. Biol. 44:1065-1076.   DOI
17 Cano-Dominguez, N., Alvarez-Delfin, K., Hansberg, W. and Aguirre, J. 2008. NADPH oxidases NOX-1 and NOX-2 require the regulatory subunit NOR-1 to control cell differentiation and growth in Neurospora crassa. Eukaryot. Cell 7:1352-1361.   DOI
18 Chi, M. H., Park, S. Y. and Lee, Y. H. 2009. A quick and safe method for fungal DNA extraction. Plant Pathol. J. 25:108-111.   DOI
19 Dagdas, Y. F., Yoshino, K., Dagdas, G., Ryder, L. S., Bielska, E., Steinberg, G. and Talbot, N. J. 2012. Septin-mediated plant cell invasion by the rice blast fungus, Magnaporthe oryzae. Science 336:1590-1595.   DOI
20 Fu, T., Park, G.-C., Han, J. H., Shin, J.-H., Park, H.-H. and Kim, K. S. 2019. MoRBP9 encoding a Ran-binding protein microtubule-organizing center is required for asexual reproduction and infection in the rice blast pathogen Magnaporthe oryzae. Plant Pathol. J. 35:564-574.   DOI
21 Giacomin, R. M., Ruas, C. D. F., Moreira, A. F. P., Guidone, G. H. M., Baba, V. Y., Rodrigues, R. and Goncalves, L. S. A. 2020. Inheritance of anthracnose resistance (Colletotrichum scovillei) in ripe and unripe Capsicum annuum fruits. J. Phytopathol. 168:184-192.   DOI
22 Saxena, A., Raghuwanshi, R., Gupta, V. K. and Singh, H. B. 2016. Chilli anthracnose: the epidemiology and management. Front. Microbiol. 7:1527.   DOI
23 Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402-408.   DOI
24 Han, J.-H., Chon, J.-K., Ahn, J.-H., Choi, I.-Y., Lee, Y.-H. and Kim, K. S. 2016. Whole genome sequence and genome annotation of Colletotrichum acutatum, causal agent of anthracnose in pepper plants in South Korea. Genom. Data 8:45-46.   DOI
25 Kayano, Y., Tanaka, A., Akano, F., Scott, B. and Takemoto, D. 2013. Differential roles of NADPH oxidases and associated regulators in polarized growth, conidiation and hyphal fusion in the symbiotic fungus Epichloe festucae. Fungal Genet. Biol. 56:87-97.   DOI
26 Bedard, K. and Krause, K.-H. 2007. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 87:245-313.   DOI
27 Fu, T., Han, J.-H., Shin, J.-H., Song, H., Ko, J., Lee, Y.-H., Kim, K.-T. and Kim, K. S. 2021. Homeobox transcription factors are required for fungal development and the suppression of host defense mechanisms in the Colletotrichum scovilleipepper pathosystem. mBio 12:e0162021.   DOI
28 Choi, J., Kim, Y., Kim, S., Park, J. and Lee, Y.-H. 2009. MoCRZ1, a gene encoding a calcineurin-responsive transcription factor, regulates fungal growth and pathogenicity of Magnaporthe oryzae. Fungal Genet. Biol. 46:243-254.   DOI
29 Park, S.-Y., Choi, J., Lim, S.-E., Lee, G.-W., Park, J., Kim, Y., Kong, S., Kim, S. R., Rho, H.-S., Jeon, J., Chi, M.-H., Kim, S., Khang, C. H., Kang, S. and Lee, Y.-H. 2013. Global expression profiling of transcription factor genes provides new insights into pathogenicity and stress responses in the rice blast fungus. PLoS Pathog. 9:e1003350.   DOI
30 Ryder, L. S., Dagdas, Y. F., Mentlak, T. A., Kershaw, M. J., Thornton, C. R., Schuster, M., Chen, J., Wang, Z. and Talbot, N. J. 2013. NADPH oxidases regulate septin-mediated cytoskeletal remodeling during plant infection by the rice blast fungus. Proc. Natl. Acad. Sci. U. S. A. 110:3179-3184.   DOI
31 Schroeckh, V., Scherlach, K., Nutzmann, H.-W., Shelest, E., Schmidt-Heck, W., Schuemann, J., Martin, K., Hertweck, C. and Brakhage, A. A. 2009. Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc. Natl. Acad. Sci. U. S. A. 106:14558-14563.   DOI
32 Shin, J.-H., Fu, T. and Kim, K. S. 2021. Pex7 selectively imports PTS2 target proteins to peroxisomes and is required for anthracnose disease development in Colletotrichum scovillei. Fungal Genet. Biol. 157:103636.   DOI
33 Sahoo, B. M., Banik, B. K., Borah, P. and Jain, A. 2022. Reactive oxygen species (ROS): key components in cancer therapies. Anticancer Agents Med. Chem. 22:215-222.   DOI
34 Kou, Y., Qiu, J. and Tao Z. 2019. Every coin has two sides: reactive oxygen species during Rice-Magnaporthe oryzae interaction. Int. J. Mol. Sci. 20:1191.   DOI
35 Lee, N.-H., Fu, T., Shin, J.-H., Song, Y.-W., Jang, D.-C. and Kim, K. S. 2021. The small GTPase CsRAC1 is important for fungal development and pepper anthracnose in Colletotrichum scovillei. Plant Pathol. J. 37:607-618.   DOI
36 Shin, J.-H., Kim, H.-Y., Fu, T., Lee, K.-H. and Kim, K. S. 2022. CsPOM1, a DYRK family kinase, plays diverse roles in fungal development, virulence, and stress tolerance in the anthracnose pathogen Colletotrichum scovillei. Front. Cell. Infect. Microbiol. 12:861915.   DOI
37 Srinivasan, M., Vijayalakshmi Kothandaraman, S., Vaikuntavasan, P. and Rethinasamy, V. 2014. Development of conventional and real-time PCR protocols for specific and sensitive detection of Colletotrichum capsici in chilli (Capsicum annuum L.). Phytoparasitica 42:437-444.   DOI
38 Sumimoto, H. 2008. Structure, regulation and evolution of Nox- family NADPH oxidases that produce reactive oxygen species. FEBS J. 275:3249-3277.   DOI
39 Oo, M. M. and Oh, S.-K. 2016. Chilli anthracnose (Colletotrichum spp.) disease and its management approach. Korean J. Agric. Sci. 43:153-162.   DOI
40 Rada, B. and Leto, T. L. 2008. Oxidative innate immune defenses by Nox/Duox family NADPH oxidases. Contrib. Microbiol. 15:164-187.   DOI
41 Scott, B. 2015. Conservation of fungal and animal nicotinamide adenine dinucleotide phosphate oxidase complexes. Mol. Microbiol. 95:910-913.   DOI
42 Han, J.-H., Shin, J.-H., Lee, Y.-H. and Kim, K. S. 2018. Distinct roles of the YPEL gene family in development and pathogenicity in the ascomycete fungus Magnaporthe oryzae. Sci. Rep. 8:14461.   DOI
43 Dieguez-Uribeondo, J., Forster, H. and Adaskaveg, J. E. 2003. Digital image analysis of internal light spots of appressoria of Colletotrichum acutatum. Phytopathology 93:923-930.   DOI
44 Kim, S., Park, M., Yeom, S.-I., Kim, Y.-M., Lee, J. M., Lee, H.-A., Seo, E., Choi, J., Cheong, K., Kim, K.-T., Jung, K., Lee, G.-W., Oh, S.-K., Bae, C., Kim, S.-B., Lee, H.-Y., Kim, S.-Y., Kim, M.-S., Kang, B.-C., Jo, Y. D., Yang, H.-B., Jeong, H.-J., Kang, W.-H., Kwon, J.-K., Shin, C., Lim, J. Y., Park, J. H., Huh, J. H., Kim, J.-S., Kim, B.-D., Cohen, O., Paran, I., Suh, M. C., Lee, S. B., Kim, Y.-K., Shin, Y., Noh, S.-J., Park, J., Seo, Y. S., Kwon, S.-Y., Kim, H. A., Park, J. M., Kim, H.-J., Choi, S.-B., Bosland, P. W., Reeves, G., Jo, S.-H., Lee, B.-W., Cho, H.-T., Choi, H.-S., Lee, M.-S., Yu, Y., Choi, Y. D., Park, B.-S., van Deynze, A., Ashrafi, H., Hill, T., Kim, W. T., Pai, H.-S., Ahn, H. K., Yeam, I., Giovannoni, J. J., Rose, J. K. C., Sorensen, I., Lee, S.-J., Kim, R. W., Choi, I.-Y., Choi, B.-S., Lim, J.-S., Lee, Y.-H. and Choi, D. 2014. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat. Genet. 46:270-278.   DOI
45 Lambeth, J. D. 2004. NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4:181-189.   DOI
46 Lara-Ortiz, T., Riveros-Rosas, H. and Aguirre, J. 2003. Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans. Mol. Microbiol. 50:1241-1255.   DOI