• 제목/요약/키워드: Novel metal

검색결과 641건 처리시간 0.032초

Novel assessment method of heavy metal pollution in surface water: A case study of Yangping River in Lingbao City, China

  • Liu, Yingran;Yu, Hongming;Sun, Yu;Chen, Juan
    • Environmental Engineering Research
    • /
    • 제22권1호
    • /
    • pp.31-39
    • /
    • 2017
  • The primary purpose of this research is to understand those elements that define heavy metals contamination and to propose a novel assessment method based on principal component analysis (PCA) in the Yangping River region of Lingbao City, China. This paper makes detailed calculations regarding such factors the single-factor assessment ($P_i$) and Nemerow's multi-factor index ($P_N$) of heavy metals found in the surface water of the Yangping River. The maximum values of $P_i$ (Cd) and $P_i$ (Pb) were determined to be 892.000 and 113.800 respectively. The maximum value of $P_N$ was calculated to be 639.836. The results of Pearson's correlation analysis, hierarchical cluster analysis, and PCA indicated heavy metal groupings as follows: Cu, Pb, Zn and As, Hg, Cd. The PCA-based pollution index ($P_{an}$) of samplings was subsequently calculated. The relative coefficient square was valued at 0.996 between $P_{an}$ and $P_N$, which indicated that $P_{an}$ is able to serve as a new heavy metal pollution index; not only this index able to eliminate the influence of the maximum value of $P_i$, but further, this index contains the principal component elements needed to evaluate heavy metal pollution levels.

Synthesis of Multi-component Olivine by a Novel Mixed Transition Metal Oxalate Coprecipitation Method and Electrochemical Characterization

  • 박영욱;김종순;권혁조;서동화;김성욱;홍지현;강기석
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2010년도 춘계학술발표대회
    • /
    • pp.37.1-37.1
    • /
    • 2010
  • The multi-component olivine cathode material, $LiMn_{1/3}Fe_{1/3}Co_{1/3}PO_4$, was prepared via a novel coprecipitation method of the mixed transition metal oxalate, $Mn_{1/3}Fe_{1/3}Co_{1/3}(C_2O_4){\cdot}2H_2O$. The stoichiometric ratio and distribution of transition metals in the oxalate, therefore, in the olivine product, was affected sensitively by the environments in the coprecipitation process, while they are the important factors in determining the electrochemical property of electrode materials with multiple transition metals. The effect of the pH, atmosphere, temperature, and aging time was investigated thoroughly with respect to the atomic ratio of transition metals, phase purity, and morphology of the mixed transition metal oxalate. The electrochemical activity of each transition metal in the olivine synthesized through this method clearly was enhanced as indicated in the cyclic voltammetry (CV) and galvanostatic charge/discharge measurement. Three distinctive contributions from Mn, Fe, and Co redox couples were detected reversibly in multiple charge and discharge processes. The first discharge capacity at the C/5 rate was $140.5\;mAh\;g^{-1}$ with good cycle retention. The rate capability test showed that the high capacity still is retained even at the 4C and 6C rates with 102 and $81\;mAh\;g^{-1}$, respectively.

  • PDF

A novel method for the synthesis of nano-magnetite particles

  • Syahmazgi, Maryam Ghodrati;Falamaki, Cavus;Lotfi, Abbas Sahebghadam
    • Advances in nano research
    • /
    • 제2권2호
    • /
    • pp.89-98
    • /
    • 2014
  • A novel and simple method for the synthesis of nano-magnetite particles is disclosed. In the novel procedure, $Fe^{2+}$ is the only source of metal cation. Carboxymethylcellulose (CMC) is used as the structure directing agent. The phase analysis of the nano-particles was performed using XRD and electron diffraction techniques. Size and morphology analysis was performed using light scattering and TEM techniques. The effect of $NH_4OH$ solution (32 wt. %) at different CMC concentrations on the size distribution of the final magnetite powders is studied. An optimal base concentration exists for each CMC concentration leading to minimal agglomeration. There exists a minimum CMC concentration (0.0016 wt. %), lower than that no magnetite forms. It is shown that using the new method, it is possible to immobilize a lipase enzyme (Candida Rugosa) with immobilization efficiency larger than 98 % with a loading more than 3 times the reported value in the literature. The latter phenomenon is explained based on the agglomerate state of the nano-particles in the liquid phase.

A set of self-timed latches for high-speed VLSI

  • 강배선;전영현
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 하계종합학술대회논문집
    • /
    • pp.534-537
    • /
    • 1998
  • In this paper, a set of novel self-timed latches are introduced and analyzed. These latches have no back-to-back connection as in conventional self-timed latch, and both inverting and noninerting outputs are evaluated simultaneously leading to thigher oepating frequencies. Power consumption of these latches ar ealso comparable to or less than that of conventional circuits. Novel type of cross-coupled inverter used in the proosed circuits implements static operatin without signal fighting with the main driver during signal transition. Proposed latches ar tested using a 0.6.mu.m triple-poly triple-metal n-well CMOS technology. The resutls indicates that proposed active-low sefl-timed latch (ALSTL) improves speed by 14-34% over conventional NAND SR latch, while in active-high self-timed latch (AHSTL) the improvements are 15-35% with less power as compared with corresponding NORA SR latch. These novel latches have been successfully implemented in a high-speed synchronous DRAM (SDRAM).

  • PDF

Evolution of Nonvolatile Resistive Switching Memory Technologies: The Related Influence on Hetrogeneous Nanoarchitectures

  • Eshraghian, Kamran
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권6호
    • /
    • pp.243-248
    • /
    • 2010
  • The emergence of different and disparate materials together with the convergence of both the 'old' and 'emerging' technologies is paving the way for integration of heterogeneous technologies that are likely to extend the limitations of silicon technology beyond the roadmap envisaged for complementary metal-oxide semiconductor. Formulation of new information processing concepts based on novel aspects of nano-scale based materials is the catalyst for new nanoarchitectures driven by a different perspective in realization of novel logic devices. The memory technology has been the pace setter for silicon scaling and thus far has pave the way for new architectures. This paper provides an overview of the inevitability of heterogeneous integration of technologies that are in their infancy through initiatives of material physicists, computational chemists, and bioengineers and explores the options in the spectrum of novel non-volatile memory technologies considered as forerunner of new logic devices.

Dual Sampling-Based CMOS Active Pixel Sensor with a Novel Correlated Double Sampling Circuit

  • Jo, Sung-Hyun;Bae, Myung-Han;Jung, Joon-Taek;Choi, Pyung;Shin, Jang-Kyoo
    • 센서학회지
    • /
    • 제21권1호
    • /
    • pp.7-12
    • /
    • 2012
  • In this paper, we propose a 4-transistor active pixel sensor(APS) with a novel correlated double sampling(CDS) circuit for the purpose of extending dynamic range. Dual sampling techniques can overcome low-sensitivity and temporal disparity problems at low illumination. To accomplish this, two images are obtained at the same time using different sensitivities. The novel CDS circuit proposed in this paper contains MOS switches that make it possible for the capacitance of a conventional CDS circuit to function as a charge pump, so that the proposed APS exhibits an extended dynamic range as well as reduced noise. The designed circuit was fabricated by using $0.35{\mu}m$ 2-poly 4-metal standard CMOS technology and its characteristics have been evaluated.

자성체를 사용하는 중금속 오염토양의 새로운 복원기술 (Novel Techniques for Remediation of Contaminated Soil with Heavy Metals Using Magnetic Substances)

  • 전충
    • 유기물자원화
    • /
    • 제19권4호
    • /
    • pp.90-96
    • /
    • 2011
  • 중금속으로 오염된 토양을 복원시키기 위한 여러 가지 기술들이 개발되어지고 제안되어져 왔다. 그러나 다양한 기술들에 대한 단점은 실제공정에 대한 적용을 어렵게 했으며 새로운 기술들에 대한 필요성이 대두되어지고 있다. 그래서 본 본문에서는 최근에 새롭게 개발되어지거나 실용화되어지고 있는 국/내외 기술들에 대하여 소개하고자 하며 특히, 자성체를 이용한 중금속 오염토양 복원기술에 대해 중점적으로 고찰하고자 한다.

이중-금속 장거리 표면-플라즈몬 도파로 (Long-Range Surface-Plasmons Excited on Double-Layered Metal Waveguides)

  • 주양현;정명진;송석호
    • 한국광학회지
    • /
    • 제19권1호
    • /
    • pp.73-79
    • /
    • 2008
  • 금속선 도파로 면과 금속 평면이 수직으로 적층된 장거리 표면-플라즈몬 도파로 구조를 제안하였으며, 표면-플라즈몬 모드의 특성을 유전체의 굴절율과 두께 변화에 대하여 이론적으로 분석하고 실험적으로 검증하였다. 위층의 금속선 도파로를 S-곡선과 Y-분기 형태로 변형시킨 이중-금속 도파로를 제작하여, 제안된 이중-금속 도파로 구조의 광 소자 응용 가능성을 살펴보았다. 제안된 이중금속 구조에서는 도파로 코어에 해당하는 두 금속 박막 사이의 유전체 굴절률을 임의로 선택하여도 장거리 표면 플라즈몬 모드가 존재할 수 있으며, 표면-플라즈몬 모드의 전파거리는 두 금속 박막 사이의 유전체 두께를 조절함으로써 증가시킬 수 있다. 또한, 이중-금속 도파로는 표면-플라즈몬을 전달할 뿐만 아니라, 삽입된 코어 유전체에 전압 및 전류를 인가하기에도 매우 적합한 구조로서, 표면-플라즈몬 능동소자 및 비선형 소자 구현에 많은 가능성을 열어줄 것으로 기대된다.