Browse > Article
http://dx.doi.org/10.17137/Korrae.2011.19.4.6

Novel Techniques for Remediation of Contaminated Soil with Heavy Metals Using Magnetic Substances  

Jeon, Choong (Department of BioChemical Engineering, Gangneung-Wonju National University)
Publication Information
Journal of the Korea Organic Resources Recycling Association / v.19, no.4, 2011 , pp. 90-96 More about this Journal
Abstract
In order to remediate contaminated soils with heavy metals, many techniques have been developed and proposed. However, weakness for the various techniques has been making application for actual process difficult. They have been led to the necessity for novel techniques. Therefore, in this study, novel techniques which are developing and commercializing recently in domestic/foreign country will be introduced, especially it will be focused on remediation technique for contaminated soil with heavy metals using magnetic material.
Keywords
Contaminated soil; Remediation; Heavy metal; Magnetic material;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bank, M., "Basiswissen Umwelttechnik Wasser", Luft, Abfall, Lrm, Umweltrecht. 2., bearb. Aufl., Vogel Wrzburg, 757 S. (1994).
2 Schuster, M., Sandor, K. and Mller, J., "Umweltchem. Entfernung von Schwermetallen aus einem Boden mit hohem Schluffanteil", kotox., 10(2), pp. 99-106. (1998).
3 Huang, J. W., Chen, J., Berti, W. R. and Cunningham, S. D., "Phytoremediation of lead-contaminated soils: Role of synthetic chelates in lead phytoextraction", Environ. Sci. Technol., 31(3), pp. 800-805. (1997).   DOI   ScienceOn
4 Wu, J., Hsu, F. C. and Cunningham, S. D., "Chelate-assisted Pb phytoextraction: Pb availability, uptake, and translocation constants", Environ. Sci. Technol., 33(11), pp. 1898-1904. (1999).   DOI   ScienceOn
5 Blaylock, M. J., Salt, D. E., Dushenkov, S., Zakharova, O., Gussman, C., Bolto, B. A. and Pawlowski L., : in Wastewater treatment by Ion-exchange (1th ed.) great britain, new York, U.S.A., pp. 209-253. (1987).
6 Vassil, A. D., Kapulnik, Y., Raskin, I. and Salt, D. E., "The role of EDTA in lead transport and accumulation by Indian Mustard", Plant Physiol., 117, pp. 447-453. (1998).   DOI   ScienceOn
7 Roll, J., : Entsorgungstechnik. VCH Verlag Weinheim, S. 117-157. (1996).
8 Langen, M., : Untersuchungen zu Grundlagen der namechanischen Bodenwsche unter besonderer Bercksichtigung der Abtrennung von Schwermetalltrgerstoffen durch Dichtesortierung und Magnetisierung. Dissertation an der RWTH Aachen, S. pp. 1-19. (1995).
9 Steele, M. C. and Pichtel, J., "Ex-situ remediation of metal-contaminated superfund soil using selective extractants", J. Environ. Engineering, 7, pp. 639-645. (1998).
10 Hiroshi, H., Masanori, Abe. and Kohki, Noda., "Biomedical and environmental applications of functionalized magnetic beads", (2005).
11 Lorenz, J., : Remobilisierung von Schwermetallen aus ruhenden Gewssersedimenten durch EDTA und NTA bei aerober und anaerober Wasserphase. Dissertation an der TH Karlsruhe, S. 1-4. (1997).
12 Hairston, D. W., "Ring up the chelates", Chem. Engineering, 1, pp. 57-60. (1997).
13 Chen, S.-Y., Liou, C.-N. and Lin, J.-G., "The influence of nitrilotriacetic acid (NTA) on metal mobilization from a contaminated river sediment", Wat. Sci. Tech., 37(6-7), pp. 47-54. (1998).   DOI   ScienceOn
14 Hong, P. K. A., Li, C., Banerji, S. K. and Regmi, T., "Extraction, recovery, and biostability of EDTA for remediation of heavy metal-contaminated soil", J. Soil Contamination, 8(1), pp. 81-103. (1999).   DOI   ScienceOn
15 So, H, "Einsatz von Magnetite-immobilisierten Chelatoren zur Extraktion von Schwermetallen aus Boden und Wasser", Dissertation an der RWTH Aachen, S. 21-23. (2003).
16 Mueller-Schulte, D. and Brunner, H., "Novel magnetic microspheres on the basis of poly(vinylalcohol) as affinity medium for quantitative detection of glycated haemoglobin", J. Chromatography A, 711, pp. 53-60. (1995).   DOI   ScienceOn
17 Bolto, B. A., "Magnetic particle technology for wastewater treatment", Waste Management, 10, pp. 11-21. (1990).   DOI   ScienceOn
18 Mueller-Schulte, D., Fssl, F. and De Cuyper, M., "Novel magnetic microcarriers on the basis of poly(vinylalcohol) for biomedical analysis", In: Scientific and Clinical Applications of magnetic carriers, Haefeli et al. (eds.), Plenum Press New York, S. pp. 93-107. (1997).
19 Ozaki, H., Liu, Z. and Terashima, Y., 1991 "Utilization of microorganisms immobilized with magnetic particles for sewage and wastewater treatment", (1991).
20 Bergemann, C., Mueller-Schulte, D., Oster, J., Brassard, L. and Lbbe, A. S., "Magnetic ion-exchange nano- and microparticles for medical, biochemical and molecular biological application", J. Magnetism and Magnetic Mat., 194, pp. 45-52. (1999).   DOI   ScienceOn
21 Parikh, I. and Cuatrecasas, P., "Affinity Chromatography. In: Molecular Interactions in Bioseparations, Ngo,T.N. (eds.)", Plenum Press New York, S. 3-13. (1993).
22 Dresco, P. A., Zaitsev, V. S., Gambino, R. J. and Chu, B., "Preparation and properties of magnetite and polymer magnetite nanoparticles", Langmuir, 15, pp. 1945-1951. (1999).   DOI   ScienceOn
23 Zaitsev, V. S., Filimonov, D. S., Presnyakov, I. A., Gambino, R. J. and Chu, B., "Physical and chemical properties of magnetite and magnetite-polymer nanoparticles and their colloidal dispersions", J. Colloid and Interface Sci., 212, pp. 49-57. (1999).   DOI   ScienceOn
24 Lasch, J. and Koelsch, R., "Enzyme linkage and multipoint attachment of agarose bound enzyme preparation", Eur. J. Biochem., 82, pp. 181-186. (1978).   DOI   ScienceOn
25 Nilsson, K. and Mosbach, K., "Immobilization of enzymes and affinity ligands to various hydroxyl group carring supports using reactive sulfonyl chlorides", Biochem. and Biophysical Res. Communications, 102(1), pp. 449-457. (1981).   DOI   ScienceOn
26 Morgan, P. E., Thomas, O. R., Dunnil, P., Sheppard, A. J. and Slater, N. K., "Poly(vinylalcohol)-coated perfluorocarbon supports for metal chelating affinity separation of a monoclonal antibody", J. Mol. Recognition, 9(5-6), pp. 394-400. (1996).   DOI
27 Hearn, M. T. W., 1986: "Application of 1,1-carbonyldiimidazole-activated matrices for the purification of proteins", J. Chromatogr., 376, pp. 245-257. (1986).   DOI
28 Bethell, G. S., Ayers, J. S., Hearn, T. W. and Hancock, W. S., "Investigation of the activation of cross-linked agarose with carbonylating reagents and the preparation of matrices for affinity chromatography purifications", J. Chromatogr., 219, pp. 353-359. (1981).
29 Porath, J. and Axen, R., "Immobilization of enzymesto agar, agarose and Sephadex supports", Methods Enzymol., 44, pp. 19-45. (1976).
30 Narinesingh, D. and Ngo, T. T., "Activation of supports containing hydroxyl groups using bis(4-nitrophenyl)carbonate", Analytical Letters, 29(4), pp. 547-564. (1996).   DOI
31 Monthiller, S., Heck, M.-P., Mioskowski, C., Lafargue, P., Lellouche, J.-P. and Masella, M., "An efficient activation of the hydroxyl funktion by (diethylamino)sulfur trifluoride (DAST): preparation of chiral polyoxygenated tetrahydrofurans by stereoselective benzyloxy group participation", Bull. Soc. Chim. Fr., 134, pp. 145-151. (1997).
32 Ngo, T. T., "Procedure for activating polymers with primary and/or secondary hydroxyl groups", Makromol. Chem., Makromol. Symp., 17, pp. 229-239. (1988).   DOI
33 Mueller-Schulte, D., "Synergistic-radiation grafting: A novel modification technique for the preparation of biomaterials", Radiat. Phys. Chem., 42, pp. 891-896. (1993).   DOI   ScienceOn