DOI QR코드

DOI QR Code

Evolution of Nonvolatile Resistive Switching Memory Technologies: The Related Influence on Hetrogeneous Nanoarchitectures

  • Received : 2001.11.24
  • Accepted : 2010.12.01
  • Published : 2010.12.25

Abstract

The emergence of different and disparate materials together with the convergence of both the 'old' and 'emerging' technologies is paving the way for integration of heterogeneous technologies that are likely to extend the limitations of silicon technology beyond the roadmap envisaged for complementary metal-oxide semiconductor. Formulation of new information processing concepts based on novel aspects of nano-scale based materials is the catalyst for new nanoarchitectures driven by a different perspective in realization of novel logic devices. The memory technology has been the pace setter for silicon scaling and thus far has pave the way for new architectures. This paper provides an overview of the inevitability of heterogeneous integration of technologies that are in their infancy through initiatives of material physicists, computational chemists, and bioengineers and explores the options in the spectrum of novel non-volatile memory technologies considered as forerunner of new logic devices.

Keywords

References

  1. A. Wegener, IEEE Signal Processing Mag. 27, 125 (2010) [DOI:10.1109/MSP.2010.936781].
  2. N. Engheta, Science 317, 1698 (2007) [DOI: 10.1126/science.1133268].
  3. K. Eshraghian, Proc. IEEE 94, 1197 (2006) [DOI:10.1109/JPROC.2006.873615].
  4. P. Abshire and A. G. Andreou, Proc. IEEE 89, 1052 (2001) [DOI:10.1109/5.939817].
  5. E. W. H. Jager, O. Inganas, and I. Lundstrom, Science 288, 2335 (2000) [DOI: 10.1126/science.288.5475.2335].
  6. C. Mavroidis, A. Dubey, and M. L. Yarmush, Ann. Rev. Biomed. Eng. 6, 363 (2004) [DOI: 10.1146/annurev.bioeng.6.040803.140143].
  7. International Technology Roadmap for Semiconductors (2009), ITRS 2009 Edition, Emerging Research Devices. from http://www.itrs.net.
  8. S. R. Ovshinsky, Phys. Rev. Lett. 21, 1450 (1968) [DOI:10.1103/PhysRevLett.21.1450].
  9. H. F. Hamann, M. O'Boyle, Y. C. Martin, M. Rooks, and H. K. Wickramasinghe, Nat. Mater. 5, 383 (2006) [DOI: 10.1038/nmat1627].
  10. R. Waser, R. Dittmann, G. Staikov, and K. Szot, Adv. Mater. 21, 2632 (2009) [DOI: 10.1002/adma.200900375].
  11. M. Di Ventura, Y. V. Pershin, and L. O. Chua, Proc. IEEE 97, 1371(2009) [DOI: 10.1109/JPROC.2009.2022882].
  12. H. Ishiwara, Curr. Appl. Phys. 9, S2 (2009) [DOI:10.1016/j.cap.2008.02.013].
  13. Y. Zheng, G. X. Ni, C. T. Toh, M. G. Zeng, S. T. Chen, K. Yao, and B. Ozyilmaz, Appl. Phys. Lett. 94, 163505 (2009) [DOI:10.1063/1.3119215].
  14. M. Wuttig and N. Yamada, Nat. Mater. 6, 824 (2007) [DOI:10.1038/nmat2009].
  15. R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, Nano Lett. 10, 414 (2009) [DOI:10.1021/nl902777z].
  16. D. Lelmini, A. L. Lacaita, and D. Mantegazza, IEEE Trans. Electron Dev. 54, 308 (2007) [DOI: 10.1109/TED.2006.888752].
  17. R. Venkatasubramanian, Nature, 463, 619 (2010) [DOI: 10.1038/463619a].
  18. J. S. Jin., J. S. Lee, and O. Kwon, Appl. Phys. Lett. 92, 171910 (2008) [DOI: 10.1063/1.2917454].
  19. J. Akerman, Science 308, 508 (2005) [DOI: 10.1126/science.1110549].
  20. S. Tehrani, J. M. Slaughter, M. Deherrera, B. N. Engel, N. D. Rizzo, J. Salter, M. Durlam, R. W. Dave, J. Janesky, B. Butcher, K. Smith, and G. Grynkewich, IEEE Proc. 91, 703 (2003)[DOI:10.1109/JPROC.2003.811804].
  21. L. O. Chua, IEEE Trans. Circuit Theory CT-18, 507 (1971).
  22. L. O. Chua and S. M. Kang, Proc. IEEE 64, 209 (1976). https://doi.org/10.1109/PROC.1976.10092
  23. O. Kavehei, A. Iqbal, Y. S. Kim, K. Eshraghian, S. F. Al-Sarawi, and D. Abbott, Proc. R. Soc. A 466, 2175 (2010) [DOI: 10.1098/rspa.2009.0553].
  24. D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, Nature 453, 80 (2008) [DOI: 10.1038/nature06932].
  25. M. Meier, C. Schindler, S. Gilles, R. Rosezin, A. Rudiger, C. Kugeler, and R. Waser, IEEE Electron Device Lett. 30, 8 (2009) [DOI: 10.1109/LED.2008.2008108].
  26. L. D. Jackel, H. P. Graf, and R. E. Howard, Appl. Opt. 26, 5077 (1987) [DOI: 10.1364/AO.26.005077].
  27. W. Xu, T. Zhang, and Y. Chen, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 18, 66 (2010) [DOI: 10.1109/TVLSI.2008.2007735].
  28. S. A. Wolf, A. Y. Chtchelkanova, and D. M. Treger, IBM J. Res. Dev. 50, 101 (2006). https://doi.org/10.1147/rd.501.0101
  29. J. C. Sankey, Y. T. Cui, J. Z. Sun, J. C. Slonczewski, R. A. Buhrman, and D. C. Ralph, Nat. Phys. 4, 67 (2008) [DOI: 10.1038/nphys783].
  30. Y. B. Bazaliy, Phys. Rev. B 76, 140402(R) (2007) [DOI:10.1103/PhysRevB.76.140402].

Cited by

  1. Polarization-dependent asymmetric hysteresis behavior in ZnCrO layers vol.60, pp.11, 2012, https://doi.org/10.3938/jkps.60.1891
  2. Ferroelectric polarization-induced memristive hysteresis behaviors in Ti- and Mn-codoped ZnO vol.68, pp.7, 2016, https://doi.org/10.3938/jkps.68.869
  3. Fabrication of zinc stannate based all-printed resistive switching device vol.166, 2016, https://doi.org/10.1016/j.matlet.2015.12.045
  4. Large memory window and tenacious data retention in (0001) ZnO:Cr ferroelectric memristive device prepared on (111) Pt layer vol.727, 2017, https://doi.org/10.1016/j.jallcom.2017.08.138
  5. Anomalous resistive switching phenomenon vol.112, pp.12, 2012, https://doi.org/10.1063/1.4770489
  6. Fabrication of graphene-nanoflake/poly(4-vinylphenol) polymer nanocomposite thin film by electrohydrodynamic atomization and its application as flexible resistive switching device vol.475, 2015, https://doi.org/10.1016/j.physb.2015.07.028
  7. Exploring resistive switching in poly(4-vinylphenol)–graphene nano-composite films vol.54, pp.3, 2015, https://doi.org/10.7567/JJAP.54.035103
  8. Effects of Ti additives on structural and electric properties of Cr- and Ti-codoped ZnO layers vol.114, pp.6, 2013, https://doi.org/10.1063/1.4817765