• Title/Summary/Keyword: Novel electrical machine

Search Result 139, Processing Time 0.029 seconds

A Novel SIME Configuration Scheme Correlating Generator Tripping for Transient Stability Assessment

  • Oh, Seung-Chan;Lee, Hwan-Ik;Lee, Yun-Hwan;Lee, Byong-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1798-1806
    • /
    • 2018
  • When a contingency occurs in a large transmission route in a power system, it can generate various instabilities that may lead to a power system blackout. In particular, transient instability in a power system needs to be immediately addressed, and preventive measures should be in place prior to fault occurrence. Measures to achieve transient stability include system reinforcement, power generation restriction, and generator tripping. Because the interpretation of transient stability is a time domain simulation, it is difficult to determine the efficacy of proposed countermeasures using only simple simulation results. Therefore, several methods to quantify transient stability have been introduced. Among them, the single machine equivalent (SIME) method based on the equal area criterion (EAC) can quantify the degree of instability by calculating the residual acceleration energy of a generator. However, method for generator tripping effect evaluation does not have been established. In this study, we propose a method to evaluate the effect of generator tripping on transient stability that is based on the SIME method. For this purpose, the measures that reflect generator tripping in the SIME calculation are reviewed. Simulation results obtained by applying the proposed method to the IEEE 39-bus system and KEPCO system are then presented.

A New Support Vector Machine Model Based on Improved Imperialist Competitive Algorithm for Fault Diagnosis of Oil-immersed Transformers

  • Zhang, Yiyi;Wei, Hua;Liao, Ruijin;Wang, Youyuan;Yang, Lijun;Yan, Chunyu
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.830-839
    • /
    • 2017
  • Support vector machine (SVM) is introduced as an effective fault diagnosis technique based on dissolved gases analysis (DGA) for oil-immersed transformers with maximum generalization ability; however, the applicability of the SVM is highly affected due to the difficulty of selecting the SVM parameters appropriately. Therefore, a novel approach combing SVM with improved imperialist competitive algorithm (IICA) for fault diagnosis of oil-immersed transformers was proposed in the paper. The improved ICA, which is proved to be an effective optimization approach, is employed to optimize the parameters of SVM. Cross validation and normalizations were applied in the training processes of SVM and the trained SVM model with the optimized parameters was established for fault diagnosis of oil-immersed transformers. Three classification benchmark sets were studied based on particle swarm optimization SVM (PSOSVM) and IICASVM with four multiple classification schemes to select the best scheme for transformer fault diagnosis. The results show that the proposed model can obtain higher diagnosis accuracy than other methods. The comparisons confirm that the proposed model is an effective approach for classification problems.

Development of DC-DC Converter for Arc Welding Machines using A Novel Half Bridge Soft Switching PWM Inverter (새로운 하프 브리지 소프트 스위칭 PWM 인버터를 이용한 용접기용 DC-DC 컨버터의 개발)

  • Kwon, Soon-Kurl;Mun, Sang-Pil
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.4
    • /
    • pp.60-67
    • /
    • 2008
  • This paper presents a new full-bridge soft switching PWM DC-DC converter circuit topology that adding two switcher, two lossless snubber quasi-resonance capacity, two diode to power source for general welding machine. This half bridge soft switching Is low voltage hight current output that first coil current is smaller than second coil current in high frequency transformer can be obtained with decreasing path loss in conventional DC bus line switcher. As it operate ZCS/ZVS in full range, high frequency, high efficiency and high output are implemented at low voltage and high DC current switching power supplies. All of this items are got from simulation and the result of experiment. If make up for the weak points of this proposed circuit, it will be used more easily for next generation TIG, MIG and MAG type of arc-welding machine.

Decoupled SVPWM for Five-Phase Permanent Magnet Machines with Trapezoidal Back-EMF

  • Lin, Zhipeng;Liu, Guohai;Zhao, Wenxiang;Chen, Qian
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1424-1433
    • /
    • 2018
  • This paper presents a novel space vector pulse-width modulation (SVPWM) to synthesize an arbitrary non-sinusoidal phase voltage. The key of the proposed method is that the switching vectors used to comprise the reference vectors in the ${\alpha}_1-{\beta}_1$ frame and the ${\alpha}_3-{\beta}_3$ frame are decoupled. In the ${\alpha}_1-{\beta}_1$ frame, the reference vector is comprised by near two large vectors. The corresponding vector comprised by the two vectors in the ${\alpha}_3-{\beta}_3$ frame is considered as a disturbance, which is restrained by close-loop control. In the ${\alpha}_3-{\beta}_3$ frame, there are two methods to comprise the reference vector. Method I is a near two middle vectors method. Method II uses near four vectors (two middle and two little vectors). The proposed SVPWM using decoupled switching vectors can guarantee a maximum modulation index in the ${\alpha}_1-{\beta}_1$ frame. The effectiveness of the proposed method is verified by simulated and experimental results under various operation conditions.

Hand Gesture Recognition Suitable for Wearable Devices using Flexible Epidermal Tactile Sensor Array

  • Byun, Sung-Woo;Lee, Seok-Pil
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1732-1739
    • /
    • 2018
  • With the explosion of digital devices, interaction technologies between human and devices are required more than ever. Especially, hand gesture recognition is advantageous in that it can be easily used. It is divided into the two groups: the contact sensor and the non-contact sensor. Compared with non-contact gesture recognition, the advantage of contact gesture recognition is that it is able to classify gestures that disappear from the sensor's sight. Also, since there is direct contacted with the user, relatively accurate information can be acquired. Electromyography (EMG) and force-sensitive resistors (FSRs) are the typical methods used for contact gesture recognition based on muscle activities. The sensors, however, are generally too sensitive to environmental disturbances such as electrical noises, electromagnetic signals and so on. In this paper, we propose a novel contact gesture recognition method based on Flexible Epidermal Tactile Sensor Array (FETSA) that is used to measure electrical signals according to movements of the wrist. To recognize gestures using FETSA, we extracted feature sets, and the gestures were subsequently classified using the support vector machine. The performance of the proposed gesture recognition method is very promising in comparison with two previous non-contact and contact gesture recognition studies.

An Adaptive Fuzzy Current Controller with Neural Network For Field-Oriented Controller Induction Machine

  • Lee, Kyu-Chan;Lee, Hahk-Sung;Cho, Kyu-Bock;Kim, Sung-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.227-230
    • /
    • 1993
  • Recently, the development of novel control methodology enables us to improve the performance of AC-machine drives by using pulse width modulation (PWM) technique. Usually, the dynamic characteristic of induction motor (IM) has been represented by the 5-th order nonlinear differential equation. This dynamics, however, can be reduced to 3-rd order dynamics by applying direct control of IM input current. This methodology concludes that it is much easier to control IM by means of the field-oriented methods employing the current controller. Therefore a precise current control is crucial to achieve a high control performance both in dynamic and steady state operations. This paper presents an adaptive fuzzy current controller with artificial neural network (ANN) for field-oriented controlled IM. This new control structure is able to adaptively minimize a current ripple while maintaining constant switching frequency. Especially the proposed controller employs neuro-computing philosophy as well as adaptive learning pattern recognizing principles with respect to variations of the system parameters. The proposed approach is applied to the IM drive system, and its performance is tested through various simulations. Simulation results show that the proposed system, compared among several known classical methods, has a superb performance.

  • PDF

A study on performance improvement of Multi-degree of freedom spherical motor (다자유도 구동 스피리컬 전동기의 성능 개선 모델에 관한 연구)

  • Kang, Dong-Woo;Go, Sung-Chul;Lee, Ho-Jun;Park, Hyun-Jong;Won, Sung-Hong;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.838-839
    • /
    • 2011
  • The spherical motor is very valuable actuator, because the motor can operate as multi-degree of freedom rotation. Especially, the motor is useful machine for robot's joint by reason of high efficiency, compact size, high power, precise control, etc. These characteristics of spherical motor have to require continuously research. Therefore, in this paper, two different types of spherical motor are compared and double-airgap spherical motor as novel stucture is introduced.

  • PDF

Design and Characteristics Analysis of Segmental Rotor Type 12/8 poles SRM with single teeth windings (단일치 권선을 가지는 분절회전자형 12/8SRM의 설계 및 특성해석)

  • Jeong, Guang-Il;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.39-40
    • /
    • 2014
  • In this paper, a novel 12/8 segmental rotor type switched reluctance motor (SRM) is proposed. Different from conventional structures, the proposed rotor consists of a series of discrete segments, and the stator is constructed from two types of stator poles: exciting and auxiliary poles. Moreover, in this structure short flux paths are taken and no flux reverse exists in the stator. While the auxiliary poles are not wound by the windings, which only provide the flux return path. Compared with conventional 12/8 SRM, the proposed structure increases the electrical utilization of the machine and decreases the core losses, which may lead to high efficiency. To verify the proposed structure, finite element method (FEM) is employed to get static and dynamic characteristics. Finally, a prototype of the proposed motor is tested for characteristics comparisons.

  • PDF

Development of Conveyor Drived Inverter Using Car Battery (차량용 배터리를 이용한 컨베이어 구동용 인버터 개발)

  • Min, W.K.;Kim, N.O.;Kim, B.C.;Jeon, H.S.;Kim, H.G.;Shin, S.D.;Yang, I.S.
    • Proceedings of the KIEE Conference
    • /
    • 2004.07e
    • /
    • pp.58-61
    • /
    • 2004
  • A novel single-phase induction machine drive containing full bridge inverter is presented. The drive is intended for conveyor system or a similar type of application requiring variable-speed operation with a fan-type load characteristic. An experimental drive based on the proposed setup has been built to verify its practical viability. The paper presents the results obtained from an investigation and discusses the properties and characteristics of the drive for the entire speed range from 0 to 60Hz.

  • PDF

Vibration-based Energy Harvester for Wireless Condition Monitoring System (무선 상태감시 시스템용 진동 기반 에너지 획득 장치)

  • Cho, Sung-Won;Son, Jong-Duk;Yang, Bo-Suk;Choi, Byeong-Keun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.4
    • /
    • pp.393-399
    • /
    • 2009
  • Historically, industrial condition monitoring has been performed by costly hard-wired sensors or infrequent checks by maintenance personnel equipped with hand held monitoring equipment. Self- powered wireless condition monitoring systems provides on-line monitoring of critical plant and machinery providing major operating cost benefits. A vibration energy harvester(VEH) is a device that converts kinetic energy occurred by machine vibration into useable electrical energy. Using VEHs to power wireless monitoring systems can yield significant benefits: increased reliability, lower life time costs and no battery disposal issues, etc. This paper proposes the novel prototype design and manufacturing of a VEH that can eliminate the effect by failed batteries.