• Title/Summary/Keyword: Novel chemical structure

Search Result 379, Processing Time 0.029 seconds

Synthesis and Characteristics of Type-II ZnO/ZnSe Core/Shell Heterostructures for High Efficient Photocatalytic Activity (Type-II ZnO/ZnSe 코어/쉘 이종 구조 합성 및 광촉매활성 평가)

  • Lee, Woo-Hyoung;Choi, Kwang-Il;Kang, Dong-Cheon;Beak, Su-Woong;Lee, Suk-Ho;Lim, Cheol-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.3
    • /
    • pp.178-183
    • /
    • 2014
  • Recently, various type of nanomaterials such as nanorod, nanowire, nanotube and their core/shell nanostructures have attracted much attention in photocatalyst due to their unique properties. Among them, Type-II core/shell heterostructures have extensively studied because it has exhibited improved electrical and optical properties against their single-component nanostructure. Such structures are expected to offer high absorption efficiency and fast charge transport due to their stepwised energetic combination and large internal surface area. Thus, it has been considered as potential candidates for high efficient photocatalytic activity. In this work, we introduce a novel chemical conversion process to synthesize Type-II ZnO/ZnSe core/shell heterostructures. A plausible conversion mechanism to ZnO/ZnSe core/shell heterostructres was proposed based on SEM, XRD, TEM and XPS analysis. The ZnO/ZnSe heterostructures exhibited excellent photocatalytic activity toward the decomposition of RhB dye compared to the ZnO nanorod arrays due to enhanced light absorption and the type-II cascade band structure.

Genetic Function Approximation and Bayesian Models for the Discovery of Future HDAC8 Inhibitors

  • Thangapandian, Sundarapandian;John, Shalini;Lee, Keun-Woo
    • Interdisciplinary Bio Central
    • /
    • v.3 no.4
    • /
    • pp.15.1-15.11
    • /
    • 2011
  • Background: Histone deacetylase (HDAC) 8 is one of its family members catalyzes the removal of acetyl groups from N-terminal lysine residues of histone proteins thereby restricts transcription factors from being expressed. Inhibition of HDAC8 has become an emerging and effective anti-cancer therapy for various cancers. Application computational methodologies may result in identifying the key components that can be used in developing future potent HDAC8 inhibitors. Results: Facilitating the discovery of novel and potential chemical scaffolds as starting points in the future HDAC8 inhibitor design, quantitative structure-activity relationship models were generated with 30 training set compounds using genetic function approximation (GFA) and Bayesian algorithms. Six GFA models were selected based on the significant statistical parameters calculated during model development. A Bayesian model using fingerprints was developed with a receiver operating characteristic curve cross-validation value of 0.902. An external test set of 54 diverse compounds was used in validating the models. Conclusions: Finally two out of six models based on their predictive ability over the test set compounds were selected as final GFA models. The Bayesian model has displayed a high classifying ability with the same test set compounds and the positively and negatively contributing molecular fingerprints were also unveiled by the model. The effectively contributing physicochemical properties and molecular fingerprints from a set of known HDAC8 inhibitors were identified and can be used in designing future HDAC8 inhibitors.

A Comparative Study on the USA and Japan National Innovation System in Biotechnology (생명공학 혁신시스템의 미.일 비교 연구 - 우리나라의 시사점 도출을 위하여 -)

  • 현병환;김흥열
    • Journal of Technology Innovation
    • /
    • v.7 no.1
    • /
    • pp.36-59
    • /
    • 1999
  • Fundamental advances in the biotechnologies are exerting a profound influence on the health care, agricultural, industrial chemical, environmental, and other industrial fields. Korean government are now more and more realizing the importance of biotechnology as a main technology for the 21st century. But any technical progress is largely the result of a complex set of relationships among the firms, institutions and others involved in development. So understanding the complexity is very important to make promoting strategies and it is even critical in the field of biotechnology. The reason is that commercialization of research results in biotechnology is strongly related with the national science bases provided by academic and public institutes. And its applicable industrial sectors are very diverse. So it is very important to make a effective collaboration system among many R&D related agents. This article discusses and compares both USA and Japanese framework of national innovation systems in the field of biotechnology. The American Innovation system encourages basic research in the biological sciences, and fosters the creation of small venture firms that focus on the development of novel products. America's peculiar incentive structure, derived from its research and educational system, financial system, and regulatory environment has driven USA labs and firms to the forefront of many biotechnology fields. The Japanese institutional environment in contrast, supported the strategy of building production expertise. Firms were urged to use the new techniques as a way of leapfrogging into a second generation of bio-products, in that cost and production advantages count. But the strategy was not effective as expected and Japanese firms have remained competent but not prominent rivals. The differing situations in USA and Japan with regard to biotechnology have many suggestions for our bioindustry. In the conclusion of this article, we translate USA and Japan's experiences to some suggestions which guide for promoting Korea's biotechnology R&D and commercialization activities.

  • PDF

Preparation and Refinement Behavior of (Hf-Ti-Ta-Zr-Nb)C High-Entropy Carbide Powders by Ultra High Energy Ball Milling Process (초고에너지 볼 밀링공정에 의한 (Hf-Ti-Ta-Zr-Nb)C 고엔트로피 카바이드 분말 제조 및 미세화 거동)

  • Song, Junwoo;Han, Junhee;Kim, Song-Yi;Seok, Jinwoo;Kim, Hyoseop
    • Journal of Powder Materials
    • /
    • v.29 no.1
    • /
    • pp.34-40
    • /
    • 2022
  • Recently, high-entropy carbides have attracted considerable attention owing to their excellent physical and chemical properties such as high hardness, fracture toughness, and conductivity. However, as an emerging class of novel materials, the synthesis methods, performance, and applications of high-entropy carbides have ample scope for further development. In this study, equiatomic (Hf-Ti-Ta-Zr-Nb)C high-entropy carbide powders have been prepared by an ultrahigh-energy ball-milling (UHEBM) process with different milling times (1, 5, 15, 30, and 60 min). Further, their refinement behavior and high-entropy synthesis potential have been investigated. With an increase in the milling time, the particle size rapidly reduces (under sub-micrometer size) and homogeneous mixing of the prepared powder is observed. The distortions in the crystal lattice, which occur as a result of the refinement process and the multicomponent effect, are found to improve the sintering, thereby notably enhancing the formation of a single-phase solid solution (high-entropy). Herein, we present a procedure for the bulk synthesis of highly pure, dense, and uniform FCC single-phase (Fm3m crystal structure) (Hf-Ti-Ta-Zr-Nb)C high-entropy carbide using a milling time of 60 min and a sintering temperature of 1,600℃.

Progress in Recent Research of 2D and Crystalline Carbon Materials in Secondary-ion Battery Application (2차원 결정성 탄소 소재의 최근 이차전지 소재 개발 동향: 그래핀(graphene)과 그라파인(graphyne)의 이차전지 개발 최근 동향)

  • Lee, Hyuck Jin;Bong, Sungyool
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.4
    • /
    • pp.162-173
    • /
    • 2022
  • The development of new materials is an essential key for unraveling the environmental and energy problems all over the world. Among the various application materials in this area, crystalline and two-dimensional carbon materials have been studied from points of view such as electrical conductivity, chemical stability, and surface engineering due to the assembly of honeycomb and sp/sp2 hybridization structure. Novel two-dimensional materials, including graphene and graphyne, have been continuously reported for several decades to develop in renewable energy fields. Also, various pristine/engineered two-dimensional carbon allotropes have been researched to combine metal nanoparticles in the form of a sphere, cubic, and so on. The renewable energy performance to apply for these materials is drastically increased. In this review, we introduce the research points of the 2D carbon allotrope materials, graphene and graphyne, and applications to improve the performance of renewable energy applications.

Utilization of carrageenan as an alternative eco-biopolymer for improving the strength of liquefiable soil

  • Regina A. Zulfikar;Hideaki Yasuhara;Naoki Kinoshita;Heriansyah Putra
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.221-230
    • /
    • 2023
  • The liquefaction of soil occurs when a soil loses strength and stiffness because of applied stress, such as an earthquake or other changes in stress conditions that result in a loss of cohesion. Hence, a method for improving the strength of liquefiable soil needs to be developed. Many techniques have been presented for their possible applications to mitigate liquefiable soil. Recently, alternative methods using biopolymers (such as xanthan gum, guar gum, and gellan gum), nontraditional additives, have been introduced to stabilize fine-grained soils. However, no studies have been done on the use of carrageenan as a biopolymer for soil improvement. Due to of its rheological and chemical structure, carrageenan may have the potential for use as a biopolymer for soil improvement. This research aims to investigate the effect of adding carrageenan on the soil strength of treated liquefiable soil. The biopolymers used for comparison are carrageenan (as a novel biopolymer), xanthan gum, and guar gum. Then, sand samples were made in cylindrical molds (5 cm × 10 cm) by the dry mixing method. The amount of each biopolymer was 1%, 3%, and 5% of the total sample volume with a moisture content of 20%, and the samples were cured for seven days. In terms of observing the effect of temperature on the carrageenan-treated soil, several samples were prepared with dry sand that was heated in an oven at various temperatures (i.e., 20℃ to 75℃) before mixing. The samples were tested with the direct shear test, UCS test, and SEM test. It can increase the cohesion value of liquefiable soil by 22% to 60% compared to untreated soil. It also made the characteristics of the liquefiable increase by 60% to 92% from very loose sandy soil (i.e., ϕ=29°) to very dense sandy soil. Carrageenan was also shown to have a significant effect on the compressive strength and to exceed the liquefaction limit. Based on the results, carrageenan was found to have the potential for use as an alternative biopolymer.

Efficient Red-Color Emission of InGaN/GaN Double Hetero-Structure Formed on Nano-Pyramid Structure

  • Go, Yeong-Ho;Kim, Je-Hyeong;Gong, Su-Hyeon;Kim, Ju-Seong;Kim, Taek;Jo, Yong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.174-175
    • /
    • 2012
  • (In, Ga) N-based III-nitride semiconductor materials have been viewed as the most promising materials for the applications of blue and green light emitting devices such as light-emitting diodes (LEDs) and laser diodes. Although the InGaN alloy can have wide range of visible wavelength by changing the In composition, it is very hard to grow high quality epilayers of In-rich InGaN because of the thermal instability as well as the large lattice and thermal mismatches. In order to avoid phase separation of InGaN, various kinds of structures of InGaN have been studied. If high-quality In-rich InGaN/GaN multiple quantum well (MQW) structures are available, it is expected to achieve highly efficient phosphor-free white LEDs. In this study, we proposed a novel InGaN double hetero-structure grown on GaN nano-pyramids to generate broad-band red-color emission with high quantum efficiency. In this work, we systematically studied the optical properties of the InGaN pyramid structures. The nano-sized hexagonal pyramid structures were grown on the n-type GaN template by metalorganic chemical vapor deposition. SiNx mask was formed on the n-type GaN template with uniformly patterned circle pattern by laser holography. GaN pyramid structures were selectively grown on the opening area of mask by lateral over-growth followed by growth of InGaN/GaN double hetero-structure. The bird's eye-view scanning electron microscope (SEM) image shows that uniform hexagonal pyramid structures are well arranged. We showed that the pyramid structures have high crystal quality and the thickness of InGaN is varied along the height of pyramids via transmission electron microscope. Because the InGaN/GaN double hetero-structure was grown on the nano-pyramid GaN and on the planar GaN, simultaneously, we investigated the comparative study of the optical properties. Photoluminescence (PL) spectra of nano-pyramid sample and planar sample measured at 10 K. Although the growth condition were exactly the same for two samples, the nano-pyramid sample have much lower energy emission centered at 615 nm, compared to 438 nm for planar sample. Moreover, nano-pyramid sample shows broad-band spectrum, which is originate from structural properties of nano-pyramid structure. To study thermal activation energy and potential fluctuation, we measured PL with changing temperature from 10 K to 300 K. We also measured PL with changing the excitation power from 48 ${\mu}W$ to 48 mW. We can discriminate the origin of the broad-band spectra from the defect-related yellow luminescence of GaN by carrying out PL excitation experiments. The nano-pyramid structure provided highly efficient broad-band red-color emission for the future applications of phosphor-free white LEDs.

  • PDF

Functional Magnetizing Treatment of Natural Quartz and Volcanic Lava Scoria (내추럴 퀄쯔와 화산암재 스코리아의 기능성 마그네타이징 처리)

  • 소대화;소현준;배두안;김정희
    • Journal of the Speleological Society of Korea
    • /
    • no.63
    • /
    • pp.1-8
    • /
    • 2004
  • The non-magnetic materials with non-conductive showing high structure dispersity were developed on the base of natural quartz and lava-scoria which was collected from Je-ju island in Korea, and treated by methane-chemical technology those were obtained novel properties of magnetization through the analyzing. Depending on the processing conditions and subsequent applications the materials produced by strong methane-chemical reaction (MCR) in alcohol solution showed concurrently magnetic, dielectric and electrical properties. The obtained magnetic-electrical powders classified by aggregate complex of their features as segnetomagnetics, containing a dielectric material as a carrying nucleus, particularly the quartz on that surface one or more layers of different compounds were synthesized having thickness up to 10~50 nm and showing magnetic, electrical and other properties. It was confirmed in magnetizing process that powders of quartz and lava-scoria produced by MCR were better oil adsorbent as of oleophilic and floating matter on water surface although their specific gravities are comparably more than 1 in quartz or less than unity, as that of water, in lava-scoira. Therefore, it will be Possible and very useful to remove low density and light gravity oil spillage in difficult recovery from sea and inland water contamination spread on water surface, by marine accident and ship sinking accident occurring frequently in recent years, by way of magnetic adsorbent conveyer system in continuous, if it could be built up the mass Production system of water-floating magnetizable oleophilic adsorbent materials with use of iow cost and good Qualify lava-scoria spread on volcano district in Je-ju island. And, there will also be urgent advent of necessity with strong possibility to develop useful applications of various magnetic functional materials include oleophilic adsorbent for removal of sea oil-contaminants and maritime pollutants, and other kinds of various utilities in industrial applications and practical uses of novel functional materials in the fields of environments and health care applications with in deep expectation.

Preparation of Novel PS-zeolite Beads Immobilized Zeolite with Polysulfone for Radioactive Materials (Polysulfone으로 제올라이트 A를 고정화한 방사성 물질제거용 PS-zeolite 비드 제조)

  • Lee, Chang-Han;Park, Jeong-Min;Kam, Sang-Kyu;Lee, Min-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.3
    • /
    • pp.145-151
    • /
    • 2015
  • In order to remove Sr ions and Cs ions from aqueous solution, PS-zeolite beads were prepared by immobilizing zeolite with polysulfone (PS). The prepared PS-zeolite beads were characterized by SEM, XRD, FT-IR, and TGA. The optimum condition to prepare PS-zeolite beads was 1.25 g of PS content and 2 g of zeolite A. The removal efficiencies of Sr and Cs ions by the PS-zeolite beads increased as the solution pH increases and nearly reached a plateau at pH 4. The PS-zeolite beads prepared in this study showed a remarkably high selectivity for Sr ion and Cs ion under the coexistence of ions such as $Na^+$, $K^+$, $Mg^{2+}$, and $Ca^{2+}$. Zeolite particles detached from the PS-zeolite beads were not observed on this experiments, and also the PS-zeolite beads maintained the morphological structure on a SEM image. The removal efficiencies of Sr ions and Cs ions by PS-zeolite beads were maintained over 90% even after five adsorption-desorption cycles. These results implied that the prepared PS-zeolite beads could be an available adsorbent for the adsorption of Sr and Cs ions. These results suggest that the PS-zeolite can potentially be used as an adsorbent in radioactive ions removal for the treatment of industrial wastewater.

Synthesis and Application of Sorbic Acid Grafted Hydrogenated Dicyclopentadiene Hydrocarbon Resin (소르빅산 변성 수소첨가 DCPD계 석유수지의 합성 및 응용)

  • Kong, Won Suk;Park, Jun Hyo;Yoon, Ho Gyu;Lee, Jae Wook
    • Journal of Adhesion and Interface
    • /
    • v.16 no.1
    • /
    • pp.29-34
    • /
    • 2015
  • Hydrocarbon resins, which are defined as low molecular weight, amorphous, and thermoplastic polymers, are widely used as tackifier for various types of adhesives, as processing aids in rubber compounds, and as modifiers for plastics polymers such as isotactic polypropylene. Typically, hydrocarbon resins are non-polar, and thus highly compatible with non-polar rubbers and polymer. However, they are poorly compatible with polar system, such as acrylic copolymer, polyurethanes, and polyamides. Moreover, recently the raw materials of hydrocarbon resin from naphtha cracking had been decreased because of light feed cracking such as gas cracking. To overcome this problem, in this study, novel hydrocarbon resins were designed to have a highly polar chemical structure which material is sustainable. And, it was successfully synthesized by Diels-Alder reaction of dicyclopentadiene monomer and sorbic acid from blueberry as renewable resources. Acrylic resins were formulated with various tackifiers solution including sorbic acid grafted hydrogenated dicyclopentadiene hydrocarbon resins in acrylic adhesive and rolling ball tack, loop tack, $180^{\circ}$ peel adhesion strength, and shear adhesion strength were measured. The properties depend on the softening point and polar content of tackifiers.