Browse > Article
http://dx.doi.org/10.5229/JKES.2022.25.4.162

Progress in Recent Research of 2D and Crystalline Carbon Materials in Secondary-ion Battery Application  

Lee, Hyuck Jin (Department of Chemistry Education, Kongju National University)
Bong, Sungyool (Department of Chemistry Education, Kongju National University)
Publication Information
Journal of the Korean Electrochemical Society / v.25, no.4, 2022 , pp. 162-173 More about this Journal
Abstract
The development of new materials is an essential key for unraveling the environmental and energy problems all over the world. Among the various application materials in this area, crystalline and two-dimensional carbon materials have been studied from points of view such as electrical conductivity, chemical stability, and surface engineering due to the assembly of honeycomb and sp/sp2 hybridization structure. Novel two-dimensional materials, including graphene and graphyne, have been continuously reported for several decades to develop in renewable energy fields. Also, various pristine/engineered two-dimensional carbon allotropes have been researched to combine metal nanoparticles in the form of a sphere, cubic, and so on. The renewable energy performance to apply for these materials is drastically increased. In this review, we introduce the research points of the 2D carbon allotrope materials, graphene and graphyne, and applications to improve the performance of renewable energy applications.
Keywords
Graphene; Graphyne; Two-dimensional materials; Renewable energy; Secondary battery;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 X. Meng, C. Yu, X. Song, J. Iocozzia, J. Hong, M. Rager, H. Jin, S. Wang, L. Huang, J. Qiu, and Z. Lin, Scrutinizing defects and defect density of selenium-doped graphene for high-efficiency triiodide reduction in dye-sensitized solar cells, Angew. Chem., 130, 4772-4776 (2018).   DOI
2 J. Ma, Y. Yuan, S. Wu, J. Y. Lee, and B. Kang, γ-Graphyne nanotubes as promising lithium-ion battery anodes, Appl. Surf. Sci., 531, 147343 (2020).   DOI
3 F. Hassani, H. Tavakol, F. Keshavarzipour, and A. Javaheri, A simple synthesis of sulfur-doped graphene using sulfur powder by chemical vapor deposition, RSC Adv., 6, 27158-27163 (2016).   DOI
4 J. Zhou, Z. Wang, Y. Chen, J. Liu, B. Zheng, W. Zhang, and Y. Li, Growth and properties of largearea sulfur-doped graphene films, J. Mater. Chem. C, 5, 7944-7949 (2017).   DOI
5 L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z. F. Wang, K. Sorr, L. Balicas, F. Liu, and P. M. Ajayan, Atomic layers of hybridized boron nitride and graphene domains, Nat. Mater., 9, 430-435 (2010).   DOI
6 T. Wu, H. Shen, L. Sun, B. Cheng, B. Liu, and J. Shen, Nitrogen and boron doped monolayer graphene by chemical vapor deposition using polystyrene, urea and boric acid, New J. Chem., 36, 1385-1391 (2012).   DOI
7 Z. Zhai, H. Shen, J. Chen, X. Li, and Y. Li, Metal-free synthesis of boron-doped graphene glass by hot-filament chemical vapor deposition for wave energy harvesting, ACS Appl. Mater. Interfaces, 12(2), 2805-2815 (2020).   DOI
8 H. Kim, O. Renault, A. Tyurnina, J.-P. Simonato, D. Rouchon, and D. Mariolle, Doping efficiency of single and randomly stacked bilayer graphene by iodine adsorption, Appl. Phys. Lett., 105, 011605 (2014).   DOI
9 Z.-S. Wu, W. Ren, L. Xu, F. Li, and H.-M. Cheng, Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries, ACS Nano, 5, 5463-5471 (2011).   DOI
10 G. H. Jun, S. H. Jin, B. Lee, B. H. Kim, W.-S. Chae, S. H. Hong, and S. Jeon, Enhanced conduction and charge-selectivity by N-doped graphene flakes in the active layer of bulkheterojunction organic solar cells, Energy Environ. Sci., 6, 3000-3006 (2013).   DOI
11 J. Xu, G. Dong, C. Jin, M. Huang, and L. Guan, Sulfur and nitrogen Co-doped, few-layered graphene oxide as a highly efficient electrocatalyst for the oxygen-reduction reaction, ChemSusChem, 6, 493-499 (2013).   DOI
12 M. S. A. Bhuyan, M. N. Uddin, M. M. Islam, F. A. Bipasha, and S. S. Hossain, Synthesis of graphene, Int. Nano Lett., 6, 65-83 (2016).   DOI
13 J. Guo, W. Wang, Y. Li, J. Liang, Q. Zhu, J. Li, and X. Wang, Room-temperature synthesis of waterdispersible sulfur-doped reduced graphene oxide without stabilizers, RSC Adv., 10, 26460-26466 (2020).   DOI
14 D. W. Chang, H.-J. Choi, and J.-B. Baek, Wetchemical nitrogen-doping of graphene nanoplatelets as electrocatalysts for the oxygen reduction reaction, J. Mater. Chem. A, 3, 7659-7665 (2015).   DOI
15 X. Tang, S. Lv, K. Jiang, G. Zhou, and X. Liu, Recent development of ionic liquid-based electrolytes in lithiumion batteries, J. Power Sources, 542, 231792 (2022).   DOI
16 C. Huang, Y. Li, N. Wang, Y. Xue, Z. Zuo, H. Liu, and Y. Li, Progress in research into 2D graphdiyne-based materials, Chem. Rev., 118, 7744-7803 (2018).   DOI
17 M. Inagaki and F. Kang, Graphene derivatives: graphane, fluorographene, graphene oxide, graphyne and graphdiyne, J. Mater. Chem. A, 2, 13193-13206 (2014).   DOI
18 L. Sathishkumar, V. Dhanapal, S. Ravi, R. Saratha, and N. Sugumaran, Compatibility of lithium ion phosphate battery in solar off grid application, J. Electrochem. Sci. Technol., 13(4), 472-478 (2022).   DOI
19 M.-S. Shin, C.-K. Choi, M.-S. Park, and S.-M. Lee, Spherical silicon/CNT/carbon composite wrapped with graphene as an anode material for lithium-ion batteries, J. Electrochem. Sci. Technol., 13(1), 159-166 (2022).   DOI
20 X. Lu, M. Yu, H. Huang, and R. S. Ruoff, Tailoring graphite with the goal of achieving single sheets, Nanotechnology, 10, 269 (1999).   DOI
21 Y. Zhang, J. P. Small, W. V. Pontius, and P. Kim, Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices, Appl. Phys. Lett., 86, 073104 (2005).   DOI
22 P. Wu, Z. Cai, Y. Gao, H. Zhang, and C. Cai, Enhancing the electrochemical reduction of hydrogen peroxide based on nitrogen-doped graphene for measurement of its releasing process from living cells, Chem. Commun., 47, 11327-11329 (2011).   DOI
23 L. Sun, L. Wang, C. Tian, T. Tan, Y. Xie, K. Shi, M. Li, and H. Fu, Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage, RSC Adv., 2, 4498-4506 (2012).   DOI
24 Y. Su, Y. Zhang, X. Zhuang, S. Li, D. Wu, F. Zhang, and X. Feng, Low-temperature synthesis of nitrogen/sulfur co-doped three-dimensional graphene frameworks as efficient metal-free electrocatalyst for oxygen reduction reaction, Carbon, 62, 296-301 (2013).   DOI
25 D. Malko, C. Neiss, F. Vines, and A. Gorling, Competition for graphene: Graphynes with directiondependent dirac cones, Phys. Rev. Lett., 108, 086804 (2012).   DOI
26 A.M. Affoune, B.L.V. Prasad, H. Sato, T. Enoki, Y. Kaburagi, and Y. Hishiyama, Experimental evidence of a single nano-graphene, Chem. Phys. Lett., 348, 17-20 (2001).   DOI
27 S. Bong, Y.-R. Kim, I. Kim, S. Woo, S. Uhm, J. Lee, and H. Kim, Graphene supported electrocatalysts for methanol oxidation, Electrochem. Commun., 12, 129-131 (2010).   DOI
28 X. Li, B. Li, Y. He, and F. Kang, A review of graphynes: Properties, applications and synthesis, New Carbon Mater., 35, 619-629 (2020).   DOI
29 X. Gao, H. Liu, D. Wang, and J. Zhang, Graphdiyne: synthesis, properties, and applications, Chem. Soc. Rev., 48, 908-936 (2019).   DOI
30 J. Zhou, J. Li, Z. Liu, and J. Zhang, Exploring approaches for the synthesis of few-layered graphdiyne, Adv. Mater., 31, 1803758 (2019).   DOI
31 H. Wang, T. Maiyalagan, and X. Wang, Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications, ACS Catal., 2, 781-794 (2012).   DOI
32 N. Li, Z. Wang, K. Zhao, Z. Shi, Z. Gu, and S. Xu, Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method, Carbon, 48(1), 255-259 (2010).   DOI
33 Y. Zhou, N. Wang, J. Muhammad, D. Wang, Y. Duan, X. Zhang, X. Dong, and Z. Zhang, Graphene nanoflakes with optimized nitrogen doping fabricated by arc discharge as highly efficient absorbers toward microwave absorption, Carbon, 148, 204-213 (2019).   DOI
34 Q. Zhang, C. Tang, W. Zhu, and C. Cheng, Strainenhanced Li storage and diffusion on the graphyne as the anode material in the Li-ion battery, J. Phys. Chem. C, 122(40), 22838-22848 (2018).   DOI
35 L. S. Panchakarla, K. S. Subrahmanyam, S. K. Saha, A. Govindaraj, H. R. Krishnamurthy, U. V. Waghmare, and C. N. R. Rao, Synthesis, structure, and properties of boron- and nitrogen-doped graphene, Adv. Mater., 21(46), 4726-4730 (2009).
36 T. V. Pham, J.-G. Kim, J. Y. Jung, J. H. Kim, H. Cho, T. H. Seo, H. Lee, N. D. Kim, and M. J. Kim, High areal capacitance of N-doped graphene synthesized by arc discharge, Adv. Funct. Mater., 29(48), 1905511 (2019).   DOI
37 W. B. Wan and M. M. Haley, Carbon networks based on dehydrobenzoannulenes. 4. Synthesis of "Star" and "Trefoil" graphdiyne substructures via sixfold crosscoupling of hexaiodobenzene, J. Org. Chem., 66(11), 3893-3901 (2001).   DOI
38 B. Wu, X. Jia, Y. Wang, J. Hu,E. Gao, Z. Liu, Superflexible C68-graphyne as a promising anode material for lithium-ion batteries, J. Mater. Chem A, 7, 17357-17365 (2019).   DOI
39 X. Liu, S. M. Cho, S. Lin, Z. Chen, W. Choi, Y.-M. Kim, E. Yun, E. H. Baek, D. H. Ryu, and H. Lee, Constructing two-dimensional holey graphyne with unusual annulative π-extension, Matter, 5(7), 2306-2318 (2022)   DOI
40 C. Liu, X. Liu, J. Tan, Q. Wang, H. Wen, and C. Zhang, Nitrogen-doped graphene by all-solid-state ball-milling graphite with urea as a high-power lithium ion battery anode, J. Power Sources, 342, 157-164 (2017).   DOI
41 Y. Shao, S. Zhang, M. H. Engelhard, G. Li, G. Shao, Y. Wang, J. Liu, I. A. Aksay, and Y. Lin, Nitrogen-doped graphene and its electrochemical applications, J. Mater. Chem., 20, 7491-7496 (2010).   DOI
42 X. Jiang, Y. Chen, X. Meng, W. Cao, C. Liu, Q. Huang, N. Naik, V. Murugadoss, M. Huang, and Z. Guo, The impact of electrode with carbon materials on safety performance of lithium-ion batteries: A review, Carbon, 191, 448-470 (2022).   DOI
43 A. Razaq, F. Bibi, X. Zheng, R. Papadakis, S. H. M. Jafri, and H. Li, Review on graphene-, graphene oxide-, reduced graphene oxide-based flexible composites: From fabrication to applications, Materials, 15, 1012 (2022).   DOI
44 H. Kim, D. I. Kim, and W.-S. Yoon, Enhancing electrochemical performance of Co(OH)2 anode materials by introducing graphene for next-generation liion batteries, J. Electrochem. Sci. Technol., 13(3), 398-406 (2022).   DOI
45 L. Sun, G. Yuan, L. Gao, J. Yang, M. Chhowalla, M. H. Gharahcheshmeh, K. K. Gleason, Y. S. Choi, B. H. Hong, and Z. Liu, Chemical vapour deposition, Nat. Rev. Methods Primer, 1, 5 (2021).   DOI
46 X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, and H. Dai, N-doping of graphene through electrothermal reactions with ammonia, Science, 324, 768-771 (2009).   DOI
47 S. Yang, L. Zhi, K. Tang, X. Feng, J. Maier, and K. Mullen, Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions, Adv. Funct. Mater., 22, 3634-3640 (2012).   DOI
48 Z.-H. Sheng, L. Shao, J.-J. Cen, W.-J. Bao, F.-B. Wang, and X.-H. Xia, Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis, ACS Nano, 5, 4350-4358 (2011).   DOI
49 Y. Wang, F. Yu, M. Zhu, C. Ma, D. Zhao, C. Wang, A. Zhou, B. Dai, J. Ji, and X. Guo, Ndoping of plasma exfoliated graphene oxide via dielectric barrier discharge plasma treatment for the oxygen reduction reaction, J. Mater. Chem. A, 6, 2011-2017 (2018).   DOI
50 S. Li, Z. Wang, H. Jiang, L. Zhang, J. Ren, M. Zheng, L. Dong, and L. Sun, Plasma-induced highly efficient synthesis of boron doped reduced graphene oxide for supercapacitors, Chem. Commun., 52, 10988-10991 (2016).   DOI
51 H. M. Jeong, J. W. Lee, W. H. Shin, Y. J. Choi, H. J. Shin, J. K. Kang, and J. W. Choi, Nitrogendoped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes, Nano Lett., 11, 2472-2477 (2011).   DOI
52 M. Son, S.-S. Chee, S.-Y. Kim, W. Lee, Y. H. Kim, B.-Y. Oh, J. Y. Hwang, B. H. Lee, and M.- H. Ham, High-quality nitrogen-doped graphene films synthesized from pyridine via two-step chemical vapor deposition, Carbon, 159, 579-585 (2020).   DOI
53 X. Li, D. Geng, Y. Zhang, X. Meng, R. Li, and X. Sun, Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries, Electrochem. Commun., 13, 822-825 (2011).   DOI
54 S. Yu, B. Guo, T. Zeng, H. Qu, J. Yang, and J. Bai, Graphene-based lithium-ion battery anode materials manufactured by mechanochemical ball milling process: A review and perspective, Compos. Part B Eng., 246, 110232 (2022).   DOI
55 Z. Luo, S. Lim, Z. Tian, J. Shang, L. Lai, B. MacDonald, C. Fu, Z. Shen, T. Yu, and J. Lin, Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property, J. Mater. Chem., 21, 8038-8044 (2011).   DOI
56 A. L. M. Reddy, A. Srivastava, S. R. Gowda, H. Gullapalli, M. Dubey, and P. M. Ajayan, Synthesis of nitrogen-doped graphene films for lithium battery application, ACS Nano, 4, 6337-6342 (2010).   DOI
57 S. M. Shinde, E. Kano, G. Kalita, M. Takeguchi, A. Hashimoto, and M. Tanemura, Grain structures of nitrogen-doped graphene synthesized by solid source-based chemical vapor deposition, Carbon, 96, 448-453 (2016).   DOI
58 V. K. Abdelkader-Fernandez, M. Domingo-Garcia, F. J. Lopez-Garzon, D. M. Fernandes, C. Freire, M. D. L. Torre, M. Melguizo, M. L. Godino-Salido, and M. Perez-Mendoza, Expanding graphene properties by a simple S-doping methodology based on cold CS2 plasma, Carbon, 144, 269-279 (2019).   DOI
59 D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties, Nano Lett., 9, 1752-1758 (2009).   DOI
60 S. H. Yang, S.-K. Park, and Y. C. Kang, Metal-organic frameworks derived FeSe2@C nanorods interconnected by N-doped graphene nanosheets as advanced anode materials for Na-ion batteries, Int. J. Energy Res., 45, 20909-20920 (2021).   DOI
61 J. M. Kehoe, J. H. Kiley, J. J. English, C. A. Johnson, R. C. Petersen, and M. M. Haley, Carbon networks based on dehydrobenzoannulenes. 3. Synthesis of graphyne substructures1, Org. Lett., 2(7), 969-972 (2000).   DOI
62 I.-Y. Jeon, S. Zhang, L. Zhang, H.-J. Choi, J.-M. Seo, Z. Xia, L. Dai, and J.-B. Baek, Edgeselectively sulfurized graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction: The electron spin effect, Adv. Mater., 25(42), 6138-6145 (2013).   DOI
63 M. M. Haley, S. C. Brand, and J. J. Pak, Carbon networks based on dehydrobenzoannulenes: Synthesis of graphdiyne substructures, Angew. Chem. Int. Ed., 36(8), 836-838 (1997).   DOI
64 H. N. Tien and S. H. Hur, Synthesis of highly durable sulfur doped graphite nanoplatelet electrocatalyst by a fast and simple wet ball milling process, Mater. Lett., 161, 399-403 (2015).   DOI
65 J. Xu, J. Shui, J. Wang, M. Wang, H.-K. Liu, S. X. Dou, I.-Y. Jeon, J.-M. Seo, J.-B. Baek, and L. Dai, Sulfur-graphene nanostructured cathodes via ball-milling for high-performance lithium-sulfur batteries, ACS Nano, 8, 10920-10930 (2014).   DOI
66 J. Xu, I.-Y. Jeon, J.-M. Seo, S. Dou, L. Dai, and J.-B. Baek, Edge-selectively halogenated graphene nanoplatelets (XGnPs, X = Cl, Br, or I) prepared by ball-milling and used as anode materials for lithium-ion batteries, Adv. Mater., 26(43), 7317-7323 (2014).   DOI